长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-22 在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)3 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A10 13B12.5 12C12.5 13D10 154 ABC中,A(5,0),B(5,0),点C在双曲线上,则=( )ABCD5 已知双曲线kx2y2=1(k0)的一条渐近线与直线2x+y3=0垂直,则双曲线的离心率是( )ABC4D6 向高为H的水瓶中注水,注满为止如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的( )ABCD7 下列函数中,既是奇函数又在区间(0,+)上单调递增的函数为( )Ay=x1By=lnxCy=x3Dy=|x|8 若ab0,则( )A01Babb2CD9 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )A6 B3 C1 D210设a0,b0,若是5a与5b的等比中项,则+的最小值为( )A8B4C1D11与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0都相切的直线有()A1条B2条C3条D4条12把函数y=cos(2x+)(|)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则的值为( )ABCD二、填空题13已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 14在(1+2x)10的展开式中,x2项的系数为(结果用数值表示)15将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 16用“”或“”号填空:30.830.717已知数列的首项,其前项和为,且满足,若对,恒成立,则的取值范围是_【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力18不等式的解为三、解答题19已知函数f(x)=,求不等式f(x)4的解集20(1)已知f(x)的定义域为2,1,求函数f(3x1)的定义域;(2)已知f(2x+5)的定义域为1,4,求函数f(x)的定义域21(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由22 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 23(本小题满分12分)求下列函数的定义域:(1);(2).24(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.长安区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】考点:向量共线定理2 【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力3 【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,中间的一个矩形最高,故10与15的中点是12.5,众数是12.5 而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可中位数是13故选:C【点评】用样本估计总体,是研究统计问题的一个基本思想方法频率分布直方图中小长方形的面积=组距,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型4 【答案】D【解析】解:ABC中,A(5,0),B(5,0),点C在双曲线上,A与B为双曲线的两焦点,根据双曲线的定义得:|ACBC|=2a=8,|AB|=2c=10,则=故选:D【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目5 【答案】A【解析】解:由题意双曲线kx2y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=x故=,k=,可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证6 【答案】B【解析】解:如果水瓶形状是圆柱,V=r2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小故A、C错故选:B7 【答案】D【解析】解:选项A:y=在(0,+)上单调递减,不正确;选项B:定义域为(0,+),不关于原点对称,故y=lnx为非奇非偶函数,不正确;选项C:记f(x)=x3,f(x)=(x)3=x3,f(x)=f(x),故f(x)是奇函数,又y=x3区间(0,+)上单调递增,符合条件,正确;选项D:记f(x)=|x|,f(x)=|x|=|x|,f(x)f(x),故y=|x|不是奇函数,不正确故选D8 【答案】A【解析】解:ab0,01,正确;abb2,错误;0,错误;01,错误;故选:A9 【答案】A【解析】试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,故选A考点:几何体的结构特征10【答案】B【解析】解:是5a与5b的等比中项,5a5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1+2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换11【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C12【答案】B【解析】解:把函数y=cos(2x+)(|)的图象向左平移个单位,得到函数y=f(x)=cos2(x+)+=cos(2x+)的图象关于直线x=对称,则2+=k,求得=k,kZ,故=,故选:B二、填空题13【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.14【答案】180 【解析】解:由二项式定理的通项公式Tr+1=Cnranr br可设含x2项的项是Tr+1=C7r (2x)r可知r=2,所以系数为C1024=180,故答案为:180【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等15【答案】【解析】考点:点关于直线对称;直线的点斜式方程.16【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题17【答案】 18【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出三、解答题19【答案】 【解析】解:函数f(x)=,不等式f(x)4,当x1时,2x+44,解得1x0;当x1时,x+14解得3x1综上x(3,0)不等式的解集为:(3,0)20【答案】 【解析】解:(1)函数y=f(x)的定义域为2,1,由23x11得:x,故函数y=f(3x1)的定义域为,;(2)函数f(2x+5)的定义域为1,4,x1,4,2x+53,13,故函数f(x)的定义域为:3,1321【答案】(1);(2)万;(3).【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;月均用水量低于3吨的频率为:;则吨1考点:频率分布直方图 22【答案】 【解析】解:圆C:的标准方程为(x+1)2+(y2)2=4由于圆心C(1,2)到直线l:3x+4y12=0的距离d=2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键 23【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论