已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高坪区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长等于( )A2 B3 C4 D与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.2 在中,其面积为,则等于( )A B C D3 函数f(x)=Asin(x+)(A0,0)的部分图象如图所示,则f()的值为( )AB0CD4 函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)5 已知函数f(x)=x26x+7,x(2,5的值域是( )A(1,2B(2,2C2,2D2,1)6 下列函数中,与函数的奇偶性、单调性相同的是( )A B C D7 已知x,yR,且,则存在R,使得xcos+ysin+1=0成立的P(x,y)构成的区域面积为( )A4B4CD +8 是z的共轭复数,若z+=2,(z)i=2(i为虚数单位),则z=( )A1+iB1iC1+iD1i9 已知全集,则( )A B C D10若命题p:xR,2x210,则该命题的否定是( )AxR,2x210 BxR,2x210CxR,2x210DxR,2x21011如图,已知平面=,是直线上的两点,是平面内的两点,且,是平面上的一动点,且有,则四棱锥体积的最大值是()A B C D12设i是虚数单位,若z=cos+isin且对应的点位于复平面的第二象限,则位于( )A第一象限B第二象限C第三象限D第四象限二、填空题13过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为14在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为15设f(x)是(x2+)6展开式的中间项,若f(x)mx在区间,上恒成立,则实数m的取值范围是16复数z=(i虚数单位)在复平面上对应的点到原点的距离为17一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是18给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是三、解答题19(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由20已知,若,求实数的值.21已知函数f(x)=在(,f()处的切线方程为8x9y+t=0(mN,tR)(1)求m和t的值;(2)若关于x的不等式f(x)ax+在,+)恒成立,求实数a的取值范围22已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程23中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率24已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值高坪区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】过作垂直于轴于,设,则,在中,为圆的半径,为的一半,因此又点在抛物线上,.2 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题3 【答案】C【解析】解:由图象可得A=, =(),解得T=,=2再由五点法作图可得2()+=,解得:=,故f(x)=sin(2x),故f()=sin()=sin=,故选:C【点评】本题主要考查由函数y=Asin(x+)的部分图象求函数的解析式,属于中档题4 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B5 【答案】C【解析】解:由f(x)=x26x+7=(x3)22,x(2,5当x=3时,f(x)min=2当x=5时,函数f(x)=x26x+7,x(2,5的值域是2,2故选:C6 【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性7 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在R,使得xcos+ysin+1=0成立,则(cos+sin)=1,令sin=,则cos=,则方程等价为sin(+)=1,即sin(+)=,存在R,使得xcos+ysin+1=0成立,|1,即x2+y21,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=4,直线y=x的倾斜角为,则AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键综合性较强8 【答案】D【解析】解:由于,(z)i=2,可得z=2i 又z+=2 由解得z=1i故选D9 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.10【答案】C【解析】解:命题p:xR,2x210,则其否命题为:xR,2x210,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;11【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。因为,所以PB=2PA。作于M,则。令AM=t,则所以即为四棱锥的高,又底面为直角梯形,所以故答案为:A12【答案】B【解析】解:z=cos+isin对应的点坐标为(cos,sin),且点(cos,sin)位于复平面的第二象限,为第二象限角,故选:B【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题二、填空题13【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题14【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题15【答案】5,+)【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x)=x3,再由条件可得mx2 在区间,上恒成立,求得x2在区间,上的最大值,可得m的范围【解答】解:由题意可得 f(x)=x6=x3由f(x)mx在区间,上恒成立,可得mx2 在区间,上恒成立,由于x2在区间,上的最大值为 5,故m5,即m的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题16【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力17【答案】2:1 【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为: =rl圆柱的侧面积为:2rl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:118【答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为三、解答题19【答案】(1);(2)万;(3).【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;月均用水量低于3吨的频率为:;则吨1考点:频率分布直方图 20【答案】【解析】考点:集合的运算.21【答案】 【解析】解:(1)函数f(x)的导数为f(x)=,由题意可得,f()=,f()=,即=,且=,由mN,则m=1,t=8;(2)设h(x)=ax+,xh()=0,即a,h(x)=a,当a时,若x,h(x)0,若x,设g(x)=a,g(x)=0,g(x)在,上递减,且g()0,则g(x)0,即h(x)0在,上恒成立由可得,a时,h(x)0,h(x)在,+)上递增,h(x)h()=0,则当a时,不等式f(x)ax+在,+)恒成立;当a时,h()0,不合题意综上可得a【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键22【答案】 【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,7),半径长r=5因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2xy+b=0所以圆心到直线l的距离为,因此,解得b=2,或b=12所以,所求直线l的方程为y=2x2,或y=2x12即2xy2=0,或2xy12=0【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用23【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作,它的概率为:;若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P=p2+,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年慢病综合征的评估
- 2024农民承包土地合同书
- 专题 07课内阅读(所有课内片段阅读) -2022-2023学年五年级语文下册期末专项复习(部编版)
- 2024简易维修合同格式
- 2024常用房屋装修合同范本
- 2024建筑工程专业分包合同
- 2024建筑工程承包施工合同书格式
- 2024工地运输合同参考范文
- 计算机编程培训课程
- 关于实习生实习报告模板集锦7篇
- 医院健康教育培训课件
- GH/T 1419-2023野生食用菌保育促繁技术规程灰肉红菇
- 高一英语语法知识点北师大
- 鼻咽癌的放射治疗课件
- 明孝端皇后九龙九凤冠
- 生殖实验室简介课件
- 注塑车间规划方案
- 营养不良五阶梯治疗
- 标本运送培训课件
- 苏教版高中通用技术必修1:一-技术的价值课件
- 《法律效力层级》课件
评论
0/150
提交评论