




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金城江区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 有以下四个命题:若=,则x=y若lgx有意义,则x0若x=y,则=若xy,则 x2y2则是真命题的序号为( )ABCD2 独立性检验中,假设H0:变量X与变量Y没有关系则在H0成立的情况下,估算概率P(K26.635)0.01表示的意义是( )A变量X与变量Y有关系的概率为1%B变量X与变量Y没有关系的概率为99%C变量X与变量Y有关系的概率为99%D变量X与变量Y没有关系的概率为99.9%3 已知e是自然对数的底数,函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,则下列不等式中成立的是( )Aa1bBab1C1abDb1a4 命题:“xR,x2x+20”的否定是( )AxR,x2x+20BxR,x2x+20CxR,x2x+20DxR,x2x+205 若复数z满足=i,其中i为虚数单位,则z=( )A1iB1+iC1iD1+i6 已知角的终边经过点,则的值为( )A B C. D07 设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D108 定义在上的偶函数满足,对且,都有,则有( )A BC. D9 已知函数f(x)=log2(x2+1)的值域为0,1,2,则满足这样条件的函数的个数为( )A8B5C9D2710=( )AiBiC1+iD1i11若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3B2:3:4C3:2:4D3:1:212函数y=2x2e|x|在2,2的图象大致为( )ABCD二、填空题13若命题“xR,x22x+m0”是假命题,则m的取值范围是14抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=15函数y=1(xR)的最大值与最小值的和为2 16【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是 17已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是18若双曲线的方程为4x29y2=36,则其实轴长为三、解答题19已知全集U=1,2,3,4,5,6,7,A=2,4,5,B=1,3,5,7(1)求AB;(2)求(UA)B;(3)求U(AB)20已知a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC(I)求C的值;()若c=2a,b=2,求ABC的面积21(本小题满分16分) 在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式(,为常数),其中与成反比,与的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大(保留1位小数)22(本题满分12分)如图1在直角三角形ABC中,A=90,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将CDE沿DE折起,使点A在平面CDE内的射影恰好为M(I)求AM的长;()求面DCE与面BCE夹角的余弦值23已知A(3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点(1)若x0=4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D判断直线CD与圆M的位置关系,并证明你的结论24(本小题满分12分)若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围金城江区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:若=,则,则x=y,即对;若lgx有意义,则x0,即对;若x=y0,则=,若x=y0,则不成立,即错;若xy0,则 x2y2,即错故真命题的序号为故选:A2 【答案】C【解析】解:概率P(K26.635)0.01,两个变量有关系的可信度是10.01=99%,即两个变量有关系的概率是99%,故选C【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题3 【答案】A【解析】解:由f(x)=ex+x2=0得ex=2x,由g(x)=lnx+x2=0得lnx=2x,作出计算y=ex,y=lnx,y=2x的图象如图:函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,y=ex与y=2x的交点的横坐标为a,y=lnx与y=2x交点的横坐标为b,由图象知a1b,故选:A【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键4 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“xR,x2x+20”的否定是xR,x2x+20故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查5 【答案】A【解析】解: =i,则=i(1i)=1+i,可得z=1i故选:A6 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.7 【答案】B【解析】本题考查了对数的计算、列举思想a时,不符;a0时,ylog2x过点(,1),(1,0),此时b0,b1符合;a时,ylog2(x)过点(0,1),(,0),此时b0,b1符合;a1时,ylog2(x1)过点(,1),(0,0),(1,1),此时b1,b1符合;共6个8 【答案】A 【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.11119 【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=1,令log2(x2+1)=2,得x2+1=4,x=则满足值域为0,1,2的定义域有:0,1, ,0,1, ,0,1, ,0,1, ,0,1,1, ,0,1,1, ,0,1, ,0,1, ,0,1,1, 则满足这样条件的函数的个数为9故选:C【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题10【答案】 B【解析】解: =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力11【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2R3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2R3: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键12【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D二、填空题13【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m114【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解15【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键16【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线的下方.因为,故当时,函数单调递减; 当时,函数单调递增;故,而当时,故当且,解之得,应填答案.考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.17【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题18【答案】6 【解析】解:双曲线的方程为4x29y2=36,即为:=1,可得a=3,则双曲线的实轴长为2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题三、解答题19【答案】 【解析】解:全集U=1,2,3,4,5,6,7,A=2,4,5,B=1,3,5,7(1)AB=1,2,3,4,5,7(2)(UA)=1,3,6,7(UA)B=1,3,7(3)AB=5U(AB)=1,2,3,4,6,7【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键20【答案】 【解析】解:(I)a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC,sinCsinA=sinAcosC,sinCsinAsinAcosC=0,sinC=cosC,tanC=,由三角形内角的范围可得C=;()c=2a,b=2,C=,由余弦定理可得c2=a2+b22abcosC,4a2=a2+124a,解得a=1+,或a=1(舍去)ABC的面积S=absinC=21【答案】(1) ()(2) 试题解析:(1) 因为与成反比,与的平方成正比, 所以可设:,则则 2分因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,即,解得:, 6分所以, () 8分(2) 由(1)可知,套题每日的销售量, 答:当销售价格为元/套时,网校每日销售套题所获得的利润最大.16分考点:利用导数求函数最值22【答案】解:(I)由已知可得AMCD,又M为CD的中点,; 3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,5分设为面BCE的法向量,由可得=(1,2,),cos,=,面DCE与面BCE夹角的余弦值为 4分23【答案】 【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y28y9=0(2)直线CD与圆M相切O、D分别是AB、BR的中点则ODAR,CAB=DOB,ACO=COD,又CAO=ACO,DOB=COD又OC=OB,所以BODCODOCD=OBD=90即OCCD,则直线CD与圆M相切 (其他方法亦可)24【答案】(1);(2)【解析】试题分析:(1)根据二次函数满足,利用多项式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拉巴尔护理流程图讲解
- 上海体育大学《医学信息织》2023-2024学年第一学期期末试卷
- 山东省日照市岚山区2025年中考数学试题模拟卷(一)含解析
- 上海市闵行区民办上宝中学2024-2025学年初三中考总复习单元同步滚动测试卷数学试题含解析
- 新疆天山职业技术大学《双语食品机械与设备》2023-2024学年第一学期期末试卷
- 新疆维吾尔自治区阿克苏地区沙雅县2025届初三下学期第一周综合自测化学试题含解析
- 长沙医学院《数据库》2023-2024学年第二学期期末试卷
- 江西农业大学《中学生物学教材分析与教学设计》2023-2024学年第二学期期末试卷
- 新疆乌鲁木齐市达标名校2025届初三全真模拟化学试题含解析
- 上海体育大学《无机及分析化学B》2023-2024学年第二学期期末试卷
- 欧洲文明与世界遗产智慧树知到期末考试答案2024年
- 江苏省南京市2023-2024学年六年级下学期期中综合测试数学试卷(苏教版)
- 交通运输团队合作协议书
- 医疗医保医药三医联动
- 养老服务知识培训课件
- (高清版)TDT 1033-2012 高标准基本农田建设标准
- 功能安全培训
- ISO37000-2021《 组织治理指南》解读和应用指导材料(雷泽佳2024A0)
- 1《国殇》练习(含答案)【中职专用】高教版2023-2024-基础模块下册
- 案例分析未及时松解止血带致患儿面临截肢危险(完整)课件
- 企业营运能力分析
评论
0/150
提交评论