已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章 积分学 定积分二重积分三重积分 积分域 区间域 平面域 空间域 曲线积分 曲线域曲面域 曲线积分 曲面积分 对弧长的曲线积分 对坐标的曲线积分 对面积的曲面积分 对坐标的曲面积分 曲面积分 曲线积分与曲面积分 第一节 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 机动 目录 上页 下页 返回 结束 对弧长的曲线积分 第十章 一、对弧长的曲线积分的概念与性质 假设曲线形细长构件在空间所占 弧段为AB , 其线密度为 “大化小, 常代变, 近似和, 求极限” 可得 为计算此构件的质量, 1.引例: 曲线形构件的质量 采用 机动 目录 上页 下页 返回 结束 设 是空间中一条有限长的光滑曲线, 义在 上的一个有界函数, 都存在, 上对弧长的曲线积分, 记作 若通过对 的任意分割 局部的任意取点, 2.定义 下列“乘积和式极限” 则称此极限为函数在曲线 或第一类曲线积分. 称为被积函数 , 称为积分弧段 . 曲线形构件的质量 和对 机动 目录 上页 下页 返回 结束 如果 L 是 xoy 面上的曲线弧 , 如果 L 是闭曲线 , 则记为 则定义对弧长的曲线积 分为 机动 目录 上页 下页 返回 结束 思考: (1) 若在 L 上 f (x, y)1, (2) 定积分是否可看作对弧长曲线积分的特例 ? 否! 对弧长的曲线积分要求 ds 0 , 但定积分中 dx 可能为负. 3. 性质 (k 为常数) ( 由 组成) ( l 为曲线弧 的长度) 机动 目录 上页 下页 返回 结束 二、对弧长的曲线积分的计算法 基本思路:计算定积分 转 化 定理: 且上的连续函数, 证: 是定义在光滑曲线弧 则曲线积分 求曲线积分 根据定义 机动 目录 上页 下页 返回 结束 点 设各分点对应参数为 对应参数为 则 机动 目录 上页 下页 返回 结束 说明: 因此积分限必须满足 (2) 注意到 因此上述计算公式相当于“换元法”. 因此 机动 目录 上页 下页 返回 结束 如果曲线 L 的方程为则有 如果方程为极坐标形式: 则 推广: 设空间曲线弧的参数方程为 则 机动 目录 上页 下页 返回 结束 例1. 计算其中 L 是抛物线 与点 B (1,1) 之间的一段弧 . 解: 上点 O (0,0) 机动 目录 上页 下页 返回 结束 例2. 计算半径为 R ,中心角为的圆弧 L 对于它的对 称轴的转动惯量I (设线密度 = 1). 解: 建立坐标系如图, 则 机动 目录 上页 下页 返回 结束 例3. 计算其中L为双纽线 解: 在极坐标系下 它在第一象限部分为 利用对称性 , 得 机动 目录 上页 下页 返回 结束 例4. 计算曲线积分 其中为螺旋 的一段弧. 解: 线 机动 目录 上页 下页 返回 结束 例5. 计算其中为球面 被平面 所截的圆周. 解: 由对称性可知 机动 目录 上页 下页 返回 结束 思考: 例5中 改为 计算 解: 令, 则 圆的形心 在原点, 故 , 如何 机动 目录 上页 下页 返回 结束 例6. 计算其中为球面 解: 化为参数方程 则 机动 目录 上页 下页 返回 结束 例7. 有一半圆弧 其线密度 解: 故所求引力为 求它对原点处单位质量质点的引力. 机动 目录 上页 下页 返回 结束 内容小结 1. 定义 2. 性质 ( l 曲线弧 的长度) 机动 目录 上页 下页 返回 结束 3. 计算 对光滑曲线弧 对光滑曲线弧 对光滑曲线弧 机动 目录 上页 下页 返回 结束 思考与练习 1. 已知椭圆周长为a , 求 提示: 原式 = 利用对称性 分析: 机动 目录 上页 下页 返回 结束 2. 设均匀螺旋形弹簧L的方程为 (1) 求它关于 z 轴的转动惯量 (2) 求它的质心 . 解: 设其密度为 (常数). (2) L的质量 而 (1) 机动 目录 上页 下页 返回 结束 故重心坐标为 作业 P131 3 (3) , (4) , (6) , (7) 5 第二节 目录 上页 下页 返回 结束 备用题 1. 设 C 是由极坐标系下曲线 及 所围区域的边界, 求 提示: 分段积分 机动 目录
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中央国家机关某部委所属事业单位招聘高校毕业生备考题库含答案详解
- 2026年外派至中铁建昆仑高速公路运营管理有限公司绵苍高速运营人员招聘备考题库及一套参考答案详解
- 2026年大连中远海运海事工程技术有限公司招聘备考题库及一套完整答案详解
- 2026年临沂又一地公开招聘工作人员10人备考题库及完整答案详解一套
- 2026年关于龙江县第一人民医院公开招聘编外医生的备考题库及一套答案详解
- 2025年高职(市场营销)定价策略实训阶段测试题及答案
- 幕墙固定方式探讨
- 路基稳定性分析
- 施工人员培训与管理方案
- 桥梁抗震设计技术研究
- 科研项目数据保护应急预案
- 健合集团在线测评原题
- 2024年河北省中考历史试题卷(含答案逐题解析)
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
- 人教版小学六年级下册数学教材习题
- 颈椎病-小讲课
- 2022年版煤矿安全规程
- 文旅夜游灯光方案
- GB/Z 43280-2023医学实验室测量不确定度评定指南
- 人音版(五线谱)(北京)音乐一年级上册小鼓响咚咚课件(共18张PPT内嵌音频)
- 《PCBA样品承认书》模版
评论
0/150
提交评论