已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数模型的简单应用 备注 简单应用学以致用,解决生活中的 实际问题 数学模型具体的数学函数关系 三角函数模型三角函数关系 函数模型的应用示例 1、物理情景 简单和谐运动 星体的环绕运动 2、地理情景 气温变化规律 月圆与月缺 3、心理、生理现象 情绪的波动 智力变化状况 体力变化状况 4、日常生活现象 涨潮与退潮 股票变化 正弦型函数 返回 例题1 下图是某简谐运动的图象,试根据图象回答下列问 题: (1)这个简谐运动的振幅、周期与频率各是多少? (2)从O点算起,到曲线上的哪一点,表示完成了 一次往复运动?如从A点算起呢? (3)写出这个简谐运动的函数表达式。 O A 2 B C DF E y/cm x/s 0.40.81.2 如图,某地一天从614时的温度变化曲线近似 满足函数 ()求这一天614时的最大温度。 ()写出这段曲线的函数解析式。 注意 一般的,所求 出的函数模型只能近似地刻 画这天某个时段的温度变化 情况,因此要特别注意自变 量的变化范围。 例题 o108612 14 10 20 30 t/h T/oC 例3. 画出函数y|sinx|的图象并观察其 周期. 根据解析式模型建立图象模型 y|sinx| x y 小结:利用函数解析式模型建立 函数图象模型,并根据图象认识性质. 根据解析式模型建立图象模型 例3. 画出函数y|sinx|的图象并观察其 周期. y|sinx| x y 例4:海水受日月的引力,在一定的时候发生涨落的现 象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下 ,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时 返回海洋。下面是某港口在某季节每天的时间与水深关 系表: 时时刻0.003.006.009.0012.0015.0018.0021.0024.00 水深( 米) 5.07.55.02.55.07.55.02.55.0 (1)选用一个函数来近似描述这个港口的水深与时间的函 数关系,给出整点时的水深的近似数值(精确到0.001)。 讲授新课 问题1:观察上表的数据,你发现了 什么规律? 问题3:能根据函数模型求整点时的水深 吗? 问题2:根据数据作出散点图. 观察图形, 你认为可以用怎样的函数模型刻 画其中的规律? x y O36912151821 24 2 4 6 解:以时间为横坐标,以水深为纵坐标,在直角坐标系中 描出各点,并用平滑的曲线连接。根据图象,可以考虑用 函数 刻画水深与时间的关系。 从数据和图象可以得出: A=2.5,h=5,T=12, 由 时时刻 0.001: 00 2: 00 3:004:005:006:007:008:009:00 10:0011:00 水深 5.0006.2507.16 5 7.5007.1656.2505.0003.7542.8352.5002.8353.754 时时刻 12.00 13:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00 水深 5.000 6.2507.165 7.5007.1656.2505.0003.7542.8352.5002.8353.754 (2)一条货船的吃水深度(船底与水面的距离)为4米, 安全条例规定至少要有1.5米的安全间隙(船底与洋底的距 离),该船何时能进入港口?在港口能呆多久? x y O36 912 151821 24 2 4 6 (2)货船需要的安全水深 为 4+1.5=5.5 (米),所以 当y5.5时就可以进港. 令 化简得 由计算器计算可得 解得 因为 ,所以有函数周期性易得 因此,货船可以在凌晨零时30分左右进港,早晨5时30分左右出 港;或在中午12时30分左右进港,下午17时30分左右出港,每次 可以在港口停留5小时左右。 解: (3)若某船的吃水深度为4米,安全间隙为1.5米,该 船在2:00开始卸货,吃水深度以每小时0.3米的速度减 少,那么该船在什么时候必须停止卸货,将船驶向较深 的水域。 x y O 3 691215 2 4 6 2 解: (3)设在时刻x船舶的安全水深为y, 那么y=5.5-0.3(x-2) (x2),在同一坐标 系内作出这两个函数的图象,可以看 到在6时到7时之间两个函数图象有一 个交点. 通过计算可得在6时的水深约为5米,此时船舶的安全水深约为 4.3米;6.5时的水深约为4.2米,此时船舶的安全水深约为4.1米; 7时的水深约为3.8米,而船舶的安全水深约为4米,因此为了安 全,船舶最好在6.5时之前停止卸货,将船舶驶向较深的水域。 小结: 1.三角函数作为描述现实世界中周期现象的一种数学模 型,可以用来研究很多问题,我们可以通过建立三角函数 模型来解决实际问题,如天气预报,地震预测,等等. 2.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国电信招聘会高频重点提升(共500题)附带答案详解
- 2025中国农科院农业资源与农业区划所植物内生微生物组学方向博士后公开招聘3人高频重点提升(共500题)附带答案详解
- 2025下半年安徽蚌埠市固镇县事业单位招聘岗位历年高频重点提升(共500题)附带答案详解
- 2025下半年四川遂宁事业单位招聘工作人员311人高频重点提升(共500题)附带答案详解
- 2025下半年四川省资阳安岳县事业单位招聘227人笔试高频重点提升(共500题)附带答案详解
- 2025下半年四川广安市事业单位招聘108人高频重点提升(共500题)附带答案详解
- 2025下半年四川凉山冕宁县招聘事业单位工作人员80人高频重点提升(共500题)附带答案详解
- 2025上海崇明工程质量检测限公司招聘5人高频重点提升(共500题)附带答案详解
- 2025上半年江苏连云港市东海县招聘事业单位人员26人历年高频重点提升(共500题)附带答案详解
- 2025上半年江苏南通海安市部分事业单位选调工作人员12人历年高频重点提升(共500题)附带答案详解
- 税务主管工作总结
- 《宪法学》2023-2024期末试题及答案(试卷号2106)
- 苯-甲苯分离精馏塔化工原理课程设计
- 《地籍与房产测绘》课程课程标准
- 病毒 课件 初中生物人教版八年级上册(2023~2024学年)
- 三年级科学上册水和空气复习课教案
- 2022年1月福建省普通高中学生学业基础会考生物试卷
- 外语慕课mooc中国文化概况(英)(东华理工大学)期末测试答案
- 2023-2024学年北京市平谷区三年级数学第一学期期末达标测试试题含答案
- 钢结构工程报价单
- 宁波大学“一页开卷”考试专用纸
评论
0/150
提交评论