




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2011年暑期辅导讲义 考点1 导数1.(2010 海南高考理科t3)曲线在点处的切线方程为( )(a) (b) (c) (d)【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选a.因为 ,所以,在点处的切线斜率,所以,切线方程为,即,故选a.2.(2010山东高考文科8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为( )(a) 13万件 (b) 11万件(c) 9万件 (d) 7万件【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力.【思路点拨】利用导数求函数的最值.【规范解答】选c,,令得或(舍去),当时;当时,故当时函数有极大值,也是最大值,故选c.3.(2010辽宁高考理科10)已知点p在曲线y=上,为曲线在点p处的切线的倾斜角,则的取值范围是( ) (a)0,) (b) (d) 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。【思路点拨】先求导数的值域,即tan的范围,再根据正切函数的性质求的范围。【规范解答】选d.4.(2010江苏高考8)函数y=(x0)的图像在点处的切线与x轴的交点的横坐标为,,若=16,则的值是_【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。【思路点拨】先由导数的几何意义求得函数y=x2(x0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。【规范解答】由y=x2(x0)得,所以函数y=x2(x0)在点(ak,ak2)处的切线方程为:当时,解得,所以.【答案】215.(2010江苏高考4)将边长为1m正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记,则s的最小值是_ _。【命题立意】 本题考查函数中的建模在实际问题中的应用,以及等价转化思想。【思路点拨】可设剪成的小正三角形的边长为,然后用分别表示梯形的周长和面积,从而将s用x表示,利用函数的观点解决.【规范解答】设剪成的小正三角形的边长为,则:方法一:利用导数的方法求最小值。,当时,递减;当时,递增;故当时,s的最小值是。方法二:利用函数的方法求最小值令,则:故当时,s的最小值是。【答案】【方法技巧】函数的最值是函数最重要的性质之一,高考不但在填空题中考查,还会在应用题、函数导数的的综合解答题中考察。高中阶段,常见的求函数的最值的常用方法有:换元法、有界性法、数形结合法、导数法和基本不等式法。6.(2010北京高考理科8)已知函数()当时,求曲线在点处的切线方程;()求的单调区间【命题立意】本题考查了导数的应用,考查利用导数求切线方程及单调区间。解决本题时一个易错点是忽视定义域。【思路点拨】(1)求出,再代入点斜式方程即可得到切线方程;(2)由讨论的正负,从而确定单调区间。【规范解答】(i)当时, 由于, 所以曲线在点处的切线方程为 即 (ii),.当时,.所以,在区间上,;在区间上,.故的单调递增区间是,单调递减区间是.当时,由,得,所以,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.当时,故的单调递增区间是.当时,得,.所以在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是7.(2010安徽高考文科20)设函数,求函数的单调区间与极值【命题立意】本题主要考查导数的运算,利用导数研究函数的单调性与极值的方法,考查考生运算能力、综合分析问题能力和问题的化归转化能力。【思路点拨】对函数求导,分析导数的符号情况,从而确定的单调区间和极值。【规范解答】+-0+极大值极小值8.(2010北京高考文科8) 设定函数,且方程的两个根分别为1,4()当a=3且曲线过原点时,求的解析式;()若在无极值点,求a的取值范围。【命题立意】本题考查了导数的求法,函数的极值,二次函数等知识。【思路点拨】(1)由的两个根及过原点,列出三个方程可解出;(2)是开口向上的二次函数,无极值点,则恒成立。【规范解答】由 得 因为的两个根分别为1,4,所以 (*)()当时,(*)式为解得又因为曲线过原点,所以故()由于a0,所以“在(-,+)内无极值点”等价于“在(-,+)内恒成立”。由(*)式得。又解 得即的取值范围【方法技巧】(1)当在的左侧为正,右侧为负时,为极大值点;当在的左侧为负,右侧为正时,为极小值点(2)二次函数恒成立问题可利用开口方向与判别式来解决。恒大于0,则;恒小于0,则;9.(2010天津高考文科20)已知函数f(x)=,其中a0. ()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)0恒成立,求a的取值范围.【命题立意】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法。【思路点拨】应用导数知识求解曲线的切线方程及函数最值。【规范解答】()当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()f(x)=.令f(x)=0,解得x=0或x=.以下分两种情况讨论:若,当x变化时,f(x),f(x)的变化情况如下表:x0f(x)+0-f(x)极大值 当等价于 解不等式组得-5a2,则.当x变化时,f(x),f(x)的变化情况如下表:x0f(x)+0-0+f(x)极大值极小值当时,f(x)0等价于即解不等式组得或.因此2a5. 综合(1)和(2),可知a的取值范围为0a5.10.(2010辽宁高考文科21)已知函数f(x)=(a+1)lnx+1.()讨论函数f(x)的单调性;()设a-2,证明:对任意(0,+),|f()-f()|4|.【命题立意】本题考查了函数的单调性与导数,求参数的取值范围,考查了分类讨论、转化等思想方法以及运算推理能力。【思路点拨】(i)求导数,对参数分类,讨论导数的符号,判断单调性, (ii)转化为等价命题,构造新函数g(x)=f(x)+4x,通过g(x)r的单调性证明。【规范解答】【方法技巧】讨论函数的单调性首先要明确函数的定义域,一般用导数的方法,对参数分类做到不重不漏。2、直接证明一个命题,不好证时可考虑证明它的等价命题。变式:(2010辽宁高考理科21)已知函数(i)讨论函数的单调性;(ii)设.如果对任意,求的取值范围。【命题立意】本题考查了函数的单调性与导数,求参数的取值范围,考查了分类讨论、转化等思想方法以及运算能力。【思路点拨】(i)求导数,对参数分类,讨论导数的符号,判断单调性, (ii)转化为等价命题,构造新函数g(x)=f(x)+4x,分离参数,求a的范围。【规范解答】【方法技巧】讨论函数的单调性首先要明确函数的定义域,一般用导数的方法,对参数分类做到不重不漏。求参数的取值范围往往要分离变量,分离时一定要使分离后的式子有意义,如分母不为0等。直接证明一个命题,不好证时可考虑证明它的等价命题。11.(2010浙江高考文科21)已知函数(-b)b)。(i)当a=1,b=2时,求曲线在点(2,)处的切线方程。(ii)设是的两个极值点,是的一个零点,且,证明:存在实数,使得 按某种顺序排列后的等差数列,并求【命题立意】本题主要考查函数的极值概念、导数运算法则、切线方程、导数应用、等差数列等基础知识,同时考查抽象概括、推理论证能力和创新意识。【思路点拨】(1)先求出再代入点斜式方程;(2)先找到,观察它们之间的关系,从而确定在等差数列中的位置。【规范解答】()当a=1,b=2时,,因为(x)=(x-1)(3x-5),故 (2)=1,f(2)=0,所以f(x)在点(2,0)处的切线方程为y=x-2()因为(x)3(xa)(x),由于ab。故a.所以f(x)的两个极值点为xa,x.不妨设x1a,x2,因为x3x1,x3x2,且x3是f(x)的零点,故x3b.又因为a2(b),所以成等差数列。所以4(a),所以存在实数x4满足题意,且x4.【方法技巧】(1)函数在处的切线方程为;(2)在函数的极值点处。12.(2010山东高考文科21)已知函数(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.【命题立意】本题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力.考查分类讨论思想、数形结合思想和等价变换思想.【思路点拨】(1)根据导数的几何意义求出曲线在点处的切线的斜率;(2)直接利用函数与导数的关系讨论函数的单调性,同时应注意分类标准的选择.变式:(2010山东高考理科22)已知函数.(1)当时,讨论的单调性;(2)设当时,若对任意,存在,使,求实数取值范围.【命题立意】本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。【思路点拨】(1)直接利用函数单调性与导数的关系讨论函数的单调性,同时应注意分类标准的选择;(2)利用导数求出的最小值、利用二次函数知识或分离常数法求出在闭区间1,2上的最大值,然后解不等式求参数.【方法技巧】1、分类讨论的原因(1)某些概念、性质、法则、公式分类定义或分类给出;(2)数的运算:如除法运算中除式不为零,在实数集内偶次方根的被开方数为非负数,对数中真数与底数的要求,不等式两边同乘以一个正数还是负数等;(3)含参数的函数、方程、不等式等问题,由参数值的不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宜宾职业技术学院《公共危机管理概论》2023-2024学年第二学期期末试卷
- 长丰县2025届数学五年级第二学期期末监测试题含答案
- 淮南职业技术学院《医学遗传学A》2023-2024学年第二学期期末试卷
- 太湖创意职业技术学院《项目评估》2023-2024学年第一学期期末试卷
- 南通理工学院《Hadoop技术与应用实训》2023-2024学年第一学期期末试卷
- 湛江市年模拟物理试题(三)
- 枣强中学高二上学期期末考试理数试题
- 建材市场销售技巧培训
- 2025装修合同范本3
- 精神病人卫生护理课件
- 中标方转让合同范例
- 2024-2025学年高中语文选择性必修下册 第2单元单元检测(原卷版)
- 山东省青岛市2025年高三年级第一次适应性检测(青岛一模)(3.10-3.12)历史试题卷
- 急性胰腺炎完整版2024
- 装修工艺流程施工标准
- 网评员培训课件
- 哪吒主题课件模板文档
- 《四时用药例》教案-【中职专用】高二语文同步教学(高教版2023·拓展模块下册)
- 2025年宁波职业技术学院单招职业倾向性测试题库及答案(历年真题)
- 《基于PLC的交通信号灯控制系统的设计》5400字【论文】
- 2024年河南南阳师范学院开招聘笔试真题
评论
0/150
提交评论