[数学]双曲线---尖子生必备.doc_第1页
[数学]双曲线---尖子生必备.doc_第2页
[数学]双曲线---尖子生必备.doc_第3页
[数学]双曲线---尖子生必备.doc_第4页
[数学]双曲线---尖子生必备.doc_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高二数学双曲线同步练习一、选择题(本大题共10小题,每小题5分,共50分)1到两定点、的距离之差的绝对值等于6的点的轨迹 ( )A椭圆B线段C双曲线D两条射线2方程表示双曲线,则的取值范围是( ) AB C D或3 双曲线的焦距是( )A4BC8D与有关xyoxyoxyoxyo4已知m,n为两个不相等的非零实数,则方程mxy+n=0与nx2+my2=mn所表示的曲线可能是( ) A B C D5 双曲线的两条准线将实轴三等分,则它的离心率为( ) AB3CD 6焦点为,且与双曲线有相同的渐近线的双曲线方程是( )ABCD7若,双曲线与双曲线有( )A相同的虚轴B相同的实轴C相同的渐近线D 相同的焦点8过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是( )A28 B22C14D129已知双曲线方程为,过P(1,0)的直线L与双曲线只有一个公共点,则L的条数共有 ( )A4条 B3条 C2条 D1条10给出下列曲线:4x+2y1=0; x2+y2=3; ,其中与直线y=2x3有交点的所有曲线是( )A B C D二、填空题(本题共4小题,每小题6分,共24分)11双曲线的右焦点到右准线的距离为_12与椭圆有相同的焦点,且两准线间的距离为的双曲线方程为_13直线与双曲线相交于两点,则=_4过点且被点M平分的双曲线的弦所在直线方程为 三、解答题(本大题共6题,共76分)15求一条渐近线方程是,一个焦点是的双曲线标准方程,并求此双曲线的离心率(12分)16双曲线的两个焦点分别为,为双曲线上任意一点,求证:成等比数列(为坐标原点)(12分)17已知动点P与双曲线x2y21的两个焦点F1,F2的距离之和为定值,且cosF1PF2的最小值为.(1)求动点P的轨迹方程;(2)设M(0,1),若斜率为k(k0)的直线l与P点的轨迹交于不同的两点A、B,若要使|MA|MB|,试求k的取值范围(12分)18已知不论b取何实数,直线y=kx+b与双曲线总有公共点,试求实数k的取值范围.(12分)19设双曲线C1的方程为,A、B为其左、右两个顶点,P是双曲线C1上的任意一点,引QBPB,QAPA,AQ与BQ交于点Q.(1)求Q点的轨迹方程;(2)设(1)中所求轨迹为C2,C1、C2的离心率分别为e1、e2,当时,e2的取值范围(14分)20某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).(14分)参考答案一、选择题(本大题共10小题,每小题5分,共50分)题号12345678910答案DDCCBBDABD二、填空题(本大题共4小题,每小题6分,共24分)11 12 13 14三、解答题(本大题共6题,共76分)15(12分)解析:设双曲线方程为:,双曲线有一个焦点为(4,0),双曲线方程化为:,双曲线方程为: 16(12分)解析:易知,准线方程:,设,则, 成等比数列.17(12分) 解析:(1)x2y21,c.设|PF1|PF2|2a(常数a0),2a2c2,a由余弦定理有cosF1PF21|PF1|PF2|()2a2,当且仅当|PF1|PF2|时,|PF1|PF2|取得最大值a2.此时cosF1PF2取得最小值1,由题意1,解得a23,P点的轨迹方程为y21.(2)设l:ykxm(k0),则由, 将代入得:(13k2)x26kmx3(m21)0 (*)设A(x1,y1),B(x2,y2),则AB中点Q(x0,y0)的坐标满足:x0即Q()|MA|MB|,M在AB的中垂线上,klkABk1 ,解得m 又由于(*)式有两个实数根,知0,即 (6km)24(13k2)3(m21)12(13k2m2)0 ,将代入得1213k2()20,解得1k1,由k0,k的取值范围是k(1,0)(0,1).18(12分)解析:联立方程组消去y得(2k21)x2+4kbx+(2b2+1)=0,当若b=0,则k;若,不合题意.Q当依题意有=(4kb)24(2k21)(2b2+1)0,对所有实数b恒成立,2k2|PA|,答:巨响发生在接报中心的西偏北45距中心处.圆锥曲线习题双曲线1. 如果双曲线1上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是( )(A)(B)(C)(D)2. 已知双曲线C0,b0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是(A)a(B)b(C)(D)3. 以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( )ABCD4. 以双曲线的右焦点为圆心,且与其右准线相切的圆的方程是()5. 若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2) B.(2,+) C.(1,5) D. (5,+)6. 若双曲线的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心率是( )(A)3 (B)5 (C) (D)7. 过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( ) w.w.w.k.s.5.u.c.o.m A B C D8. 已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点在双曲线上.则( ) A. -12 B. -2 C. 0 D. 4二、填空题9. 过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_10. 已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 11. 过双曲线的左焦点且垂直于轴的直线与双曲线相交于两点,以为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为_12. 已知点在双曲线上,并且到这条双曲线的右准线的距离恰是到双曲线两个焦点的距离的等差中项,那么点的横坐标是_13. 已知是双曲线的两个焦点,是过点的弦,且的倾斜角为,那么的值是_14. 已知是的两个顶点,内角满足,则顶点的轨迹方程是_15. 过双曲线的右焦点F作倾斜角为的直线,交双曲线于PQ两点,则|FP|FQ|的值为_.16. 已知是双曲线上除顶点外任意一点,为左右焦点,为半焦距,内切圆与切于点,则的值为_三、解答题17. 如图,在以点为圆心,为直径的半圆中,是半圆弧上一点,曲线是满足为定值的动点的轨迹,且曲线过点.()建立适当的平面直角坐标系,求曲线的方程;()设过点的直线l与曲线相交于不同的两点、.若的面积不小于,求直线斜率的取值范围.18. 双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点已知成等差数列,且与同向()求双曲线的离心率;()设被双曲线所截得的线段的长为4,求双曲线的方程19. 已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由20. 已知双曲线C的方程为,离心率,顶点到渐近线的距离为。(1)求双曲线C的方程;(2)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围双曲线习题解答题详细答案选择题:1. A 2. B 3. A 4. B 5. B 6. D7. C 8. C 填空题: 9. 10. 11. 212. 13. 16 14. 15. 16. 17. 如图,在以点为圆心,为直径的半圆中,是半圆弧上一点,曲线是满足为定值的动点的轨迹,且曲线过点.()建立适当的平面直角坐标系,求曲线的方程;()设过点的直线l与曲线相交于不同的两点、.若的面积不小于,求直线斜率的取值范围.解:()以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得MA-MB=PA-PBAB4.曲线C是以原点为中心,A、B为焦点的双曲线.设实半轴长为a,虚半轴长为b,半焦距为c,则c2,2a2,a2=2,b2=c2-a2=2.曲线C的方程为.解法2:同解法1建立平面直角坐标系,则依题意可得MA-MB=PA-PBAB4.曲线C是以原点为中心,A、B为焦点的双曲线.设双曲线的方程为0,b0).则由 解得a2=b2=2,曲线C的方程为()解法1:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.直线l与双曲线C相交于不同的两点E、F, k(-,-1)(-1,1)(1,).设E(x,y),F(x2,y2),则由式得x1+x2=,于是EF而原点O到直线l的距离d,SDEF=若OEF面积不小于2,即SOEF,则有 综合、知,直线l的斜率的取值范围为-,-1(1-,1) (1, ).解法2:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.直线l与双曲线C相交于不同的两点E、F, .k(-,-1)(-1,1)(1,).设E(x1,y1),F(x2,y2),则由式得x1-x2= 当E、F在同一去上时(如图1所示),SOEF当E、F在不同支上时(如图2所示).SODE=综上得SOEF于是由OD2及式,得SOEF=若OEF面积不小于2 综合、知,直线l的斜率的取值范围为-,-1(-1,1)(1,).18. ()设,由勾股定理可得:得:,由倍角公式,解得,则离心率()过直线方程为,与双曲线方程联立将,代入,化简有将数值代入,有,解得故所求的双曲线方程为。19. 解:由条件知,设,(I)解法一:(I)设,则则,由得即于是的中点坐标为当不与轴垂直时,即又因为两点在双曲线上,所以,两式相减得,即将代入上式,化简得当与轴垂直时,求得,也满足上述方程所以点的轨迹方程是解法二:同解法一的(I)有当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以 由得当时,由得,将其代入有整理得当时,点的坐标为,满足上述方程当与轴垂直时,求得,也满足上述方程故点的轨迹方程是(II)假设在轴上存在定点,使为常数当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以,于是因为是与无关的常数,所以,即,此时=当与轴垂直时,点的坐标可分别设为,此时故在轴上存在定点,使为常数20.()由题意知,双曲线C的顶点(0,a)到渐近线,所以所以由所以曲线的方程是()设直线AB的方程为由题意知由由将P点的坐标代入得设Q为直线AB与y轴的交点,则Q点的坐标为(0,m)=【例1】若椭圆与双曲线有相同的焦点F1,F2,P是两条曲线的一个交点,则|PF1|PF2|的值是 ( )A. B. C. D. 【解析】椭圆的长半轴为双曲线的实半轴为,故选A.【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键.【例2】已知双曲线与点M(5,3),F为右焦点,若双曲线上有一点P,使最小,则P点的坐标为【分析】待求式中的是什么?是双曲线离心率的倒数.由此可知,解本题须用双曲线的第二定义.【解析】双曲线的右焦点F(6,0),离心率右准线为.作于N,交双曲线右支于P,连FP,则.此时为最小.在中,令,得取.所求P点的坐标为. (2)渐近线双曲线与直线相约天涯对于二次曲线,渐近线为双曲线所独有. 双曲线的许多特性围绕着渐近线而展开.双曲线的左、右两支都无限接近其渐近线而又不能与其相交,这一特有的几何性质不仅很好地界定了双曲线的范围.由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中.【例3】过点(1,3)且渐近线为的双曲线方程是【解析】设所求双曲线为点(1,3)代入:.代入(1):即为所求.【评注】在双曲线中,令即为其渐近线.根据这一点,可以简洁地设待求双曲线为,而无须考虑其实、虚轴的位置.(3)共轭双曲线 虚、实易位的孪生弟兄将双曲线的实、虚轴互易,所得双曲线方程为:.这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同;它们又有共同的渐近线而为渐近线所界定的范围不一样;它们的许多奇妙性质在解题中都有广泛的应用.【例4】两共轭双曲线的离心率分别为,证明:=1.【证明】双曲线的离心率;双曲线的离心率. (4)等轴双曲线和谐对称 与圆同美实、虚轴相等的双曲线称为等轴双曲线,等轴双曲线的对称性可以与圆为伴.【例5】设CD是等轴双曲线的平行于实轴的任一弦,求证它的两端点与实轴任一顶点的连线成直角.【证明】如图设等轴双曲线方程为,直线CD:y=m.代入(1):.故有:.取双曲线右顶点.那么:.即CBD=90.同理可证:CAD=90. 通法 特法 妙法(1)方程法为解析几何正名解析法的指导思想是函数方程思想,其主要手段是列、解方程、方程组或不等式.【例6】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( )(A) (B) (C) (D)【解析1】设AB交x轴于M,并设双曲线半焦距为c,是等边三角形,点代入双曲线方程:.化简得:.(e1,及舍去)故选D.【解析2】连AF1,则AF1F2为直角三角形,且斜边F1F2之长为2c.令由直角三角形性质知:.e1,取.选D.【评注】即使是解析法解题,也须不失时机地引入几何手段.(2)转换法为解题化归立意【例7】直线过双曲线的右焦点,斜率k=2.若与双曲线的两个交点分别在左右两支上,则双曲线的离心率e的范围是 ( ) A.e B.1e C.1e【分析】就题论题的去解这道题,确实难以下手,那就考虑转换吧.其一,直线和双曲线的两支都有交点不好掌握,但是和两条渐近线都有交点却很好掌握.其二,因为已知直线的斜率为2,所以双曲线的两条渐近线中,倾斜角为钝角的渐近线肯定与之相交,只须考虑倾斜角为锐角的渐近线也与之相交.故有如下妙解.【解析】如图设直线的倾斜角为,双曲线渐近线的倾斜角为.显然。当时直线与双曲线的两个交点分别在左右两支上.由. 双曲线中,故取e.选D.(3)几何法使数形结合带上灵性【例8】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( )A B C. D【解析】双曲线的实、虚半轴和半焦距分别是:.设;于是,故知PF1F2是直角三角形,F1P F2=90.选B.【评注】解题中发现PF1F2是直角三角形,是事前不曾想到的吧?可是,这一美妙的结果不是每个考生都能临场发现的.将最美的结果隐藏在解题过程之中以鉴别考生的思维能力,这正是命题人的高明之处.(4)设而不求与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求.请看下例:【例9】双曲线的一弦中点为(2,1),则此弦所在的直线方程为 ( )A. B. C. D. 【解析】设弦的两端分别为.则有:.弦中点为(2,1),.故直线的斜率.则所求直线方程为:,故选C.“设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤,只要有可能,可以用虚设代替而不必真地去求它.但是,“设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:【例10】在双曲线上,是否存在被点M(1,1)平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.如果不问情由地利用“设而不求”的手段,会有如下解法:【错解】假定存在符合条件的弦AB,其两端分别为:A(x1,y1),B(x2,y2).那么:.M(1,1)为弦AB的中点,故存在符合条件的直线AB,其方程为:.这个结论对不对呢?我们只须注意如下两点就够了:其一:将点M(1,1)代入方程,发现左式=1-1,故点M(1,1)在双曲线的外部;其二:所求直线AB的斜率,而双曲线的渐近线为.这里,说明所求直线不可能与双曲线相交,当然所得结论也是荒唐的.问题出在解题过程中忽视了直线与双曲线有公共点的条件.【正解】在上述解法的基础上应当加以验证.由这里,故方程(2)无实根,也就是所求直线不合条件.此外,上述解法还疏忽了一点:只有当时才可能求出k=2.若.说明这时直线与双曲线只有一个公共点,仍不符合题设条件.结论;不存在符合题设条件的直线.(5)设参消参换元自如 地阔天宽一道难度较大的解析几何综合题,往往牵涉到多个变量.要从中理出头绪,不能不恰当地处理那些非主要的变量,这就要用到参数法,先设参,再消参.【例11】如图,点为双曲线的左焦点,左准线交轴于点,点P是上的一点,已知,且线段PF的中点在双曲线的左支上.()求双曲线的标准方程;()若过点的直线与双曲线的左右两支分别交于、两点,设,当时,求直线的斜率的取值范围. 【分析】第()问中,线段PF的中点M的坐标是主要变量,其它都是辅助变量.注意到点M是直角三角形斜边的中点,所以利用中点公式是设参消参的主攻方向 第()中,直线的斜率是主要变量,其它包括都是辅助变量. 斜率的几何意义是有关直线倾斜角的正切,所以设置直线的参数方程,而后将参数用的三角式表示,是一个不错的选择.【解析】()设所求双曲线为:.其左焦点为F(-c。0);左准线:.由,得P(,1);由FP的中点为.代入双曲线方程: 根据(1)与(2).所求双曲线方程为. ()设直线的参数方程为:.代入得:当,方程(3)总有相异二实根,设为. 已知直线与双曲线的左右两支分别交于、两点,.于是:.注意到在上是增函数,(4)代入(5): 双曲线的渐近线斜率为,故直线与双曲线的左右两支分别交必须.综合得直线的斜率的取值范围是.双曲线1已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6) (1)求双曲线方程 (2)动直线l经过A1PA2的重心G,与双曲线交于不同的两点M、N,问 是否存在直线l,使G平分线段MN,证明你的结论 解 (1)如图,设双曲线方程为=1 由已知得,解得a2=9,b2=12 所以所求双曲线方程为=1 (2)P、A1、A2的坐标依次为(6,6)、(3,0)、(3,0),其重心G的坐标为(2,2)假设存在直线l,使G(2,2)平分线段MN,设M(x1,y1),N(x2,y2) 则有,kl=l的方程为y= (x2)+2,由,消去y,整理得x24x+28=0 =164280,所求直线l不存在 2已知双曲线,问过点A(1,1)能否作直线,使与双曲线交于P、Q两点,并且A为线段PQ的中点?若存在,求出直线的方程,若不存在,说明理由。 错解 设符合题意的直线存在,并设、 则 (1)得 因为A(1,1)为线段PQ的中点, 所以 将(4)、(5)代入(3)得 若,则直线的斜率 所以符合题设条件的直线存在。 其方程为 剖析 在(3)式成立的前提下,由(4)、(5)两式可推出(6)式,但由(6)式不能推出(4)(5)两式,故应对所求直线进行检验,上述错解没有做到这一点,故是错误的。 应在上述解题的基础上,再由 得 根据,说明所求直线不存在。3已知点N(1,2),过点N的直线交双曲线于A、B两点,且(1)求直线AB的方程;(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?为什么?解:(1)设直线AB:代入得 () 令A(x1,y1),B(x2,y2),则x1、x2是方程的两根 且 N是AB的中点 k = 1 AB方程为:y = x + 1 (2)将k = 1代入方程()得 或 由得, , CD垂直平分AB CD所在直线方程为 即代入双曲线方程整理得 令,及CD中点则, , |CD| =, ,即A、B、C、D到M距离相等 A、B、C、D四点共圆例题定义类1,已知,一曲线上的动点到距离之差为6,则双曲线的方程为点拨:一要注意是否满足,二要注意是一支还是两支 ,的轨迹是双曲线的右支.其方程为2双曲线的渐近线为,则离心率为点拨:当焦点在x轴上时,;当焦点在y轴上时,3某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的解析如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(1020,0),B(1020,0),C(0,1020)设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PC|,故P在AC的垂直平分线PO上,PO的方程为y=x,因B点比A点晚4s听到爆炸声,故|PB| |PA|=3404=1360由双曲线定义知P点在以A、B为焦点的双曲线上,ABCPOxy依题意得a=680, c=1020,用y=x代入上式,得,|PB|PA|,答:巨响发生在接报中心的西偏北450距中心处.【名师指引】解应用题的关键是将实际问题转换为“数学模型”4 设P为双曲线上的一点F1、F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则PF1F2的面积为()AB12CD24解析: 又由、解得直角三角形,故选B。5如图2所示,为双曲线的左焦点,双曲线上的点与关于轴对称,则的值是()A9 B16 C18 D27 解析,选C6.P是双曲线左支上的一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心的横坐标为()(A)(B)(C)(D)解析设的内切圆的圆心的横坐标为,由圆的切线性质知,7,若椭圆与双曲线有相同的焦点F1,F2,P是两条曲线的一个交点,则|PF1|PF2|的值是 ( )A. B. C. D.【解析】椭圆的长半轴为双曲线的实半轴为,故选A.求双曲线的标准方程1已知双曲线C与双曲线=1有公共焦点,且过点(3,2).求双曲线C的方程【解题思路】运用方程思想,列关于的方程组解析解法一:设双曲线方程为=1.由题意易求c=2.又双曲线过点(3,2),=1.又a2+b2=(2)2,a2=12,b2=8.故所求双曲线的方程为=1.解法二:设双曲线方程为1,将点(3,2)代入得k=4,所以双曲线方程为1.2.已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为;解析设双曲线方程为,当时,化为,当时,化为,综上,双曲线方程为或3.以抛物线的焦点为右焦点,且两条渐近线是的双曲线方程为_.解析 抛物线的焦点为,设双曲线方程为,双曲线方程为4.已知点,动圆与直线切于点,过、与圆相切的两直线相交于点,则点的轨迹方程为A BC(x 0) D解析,点的轨迹是以、为焦点,实轴长为2的双曲线的右支,选B与渐近线有关的问题1若双曲线的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A. B.C.D.【解题思路】通过渐近线、离心率等几何元素,沟通的关系解析 焦点到渐近线的距离等于实轴长,故,,所以【名师指引】双曲线的渐近线与离心率存在对应关系,通过的比例关系可以求离心率,也可以求渐近线方程2.双曲线的渐近线方程是 ()A. B. C. D. 解析选C3.焦点为(0,6),且与双曲线有相同的渐近线的双曲线方程是()A B C D解析从焦点位置和具有相同的渐近线的双曲线系两方面考虑,选B4,过点(1,3)且渐近线为的双曲线方程是【解析】设所求双曲线为点(1,3)代入:.代入(1):即为所求.【评注】在双曲线中,令即为其渐近线.根据这一点,可以简洁地设待求双曲线为,而无须考虑其实、虚轴的位置.5 设CD是等轴双曲线的平行于实轴的任一弦,求证它的两端点与实轴任一顶点的连线成直角.【证明】如图设等轴双曲线方程为,直线CD:y=m.代入(1):.故有:.取双曲线右顶点.那么:.即CBD=90.同理可证:CAD=90.几何1设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A B C. D【解析】双曲线的实、虚半轴和半焦距分别是:.设;于是,故知PF1F2是直角三角形,F1P F2=90.选B.求弦1双曲线的一弦中点为(2,1),则此弦所在的直线方程为 ( )A. B. C. D.【解析】设弦的两端分别为.则有:.弦中点为(2,1),.故直线的斜率.则所求直线方程为:,故选C.“设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤,只要有可能,可以用虚设代替而不必真地去求它.但是,“设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:2 在双曲线上,是否存在被点M(1,1)平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.如果不问情由地利用“设而不求”的手段,会有如下解法:【正解】在上述解法的基础上应当加以验证.由这里,故方程(2)无实根,也就是所求直线不合条件.此外,上述解法还疏忽了一点:只有当时才可能求出k=2.若.说明这时直线与双曲线只有一个公共点,仍不符合题设条件.结论;不存在符合题设条件的直线.换远(压轴题)1如图,点为双曲线的左焦点,左准线交轴于点,点P是上的一点,已知,且线段PF的中点在双曲线的左支上.()求双曲线的标准方程;()若过点的直线与双曲线的左右两支分别交于、两点,设,当时,求直线的斜率的取值范围. 【分析】第()问中,线段PF的中点M的坐标是主要变量,其它都是辅助变量.注意到点M是直角三角形斜边的中点,所以利用中点公式是设参消参的主攻方向第()中,直线的斜率是主要变量,其它包括都是辅助变量. 斜率的几何意义是有关直线倾斜角的正切,所以设置直线的参数方程,而后将参数用的三角式表示,是一个不错的选择.【解析】()设所求双曲线为:.其左焦点为F(-c。0);左准线:.由,得P(,1);由FP的中点为.代入双曲线方程:根据(1)与(2).所求双曲线方程为.()设直线的参数方程为:.代入得:当,方程(3)总有相异二实根,设为. 已知直线与双曲线的左右两支分别交于、两点,.于是:.注意到在上是增函数,(4)代入(5): 双曲线的渐近线斜率为,故直线与双曲线的左右两支分别交必须.综合得直线的斜率的取值范围是.练习题1已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6)(1)求双曲线方程(2)动直线l经过A1PA2的重心G,与双曲线交于不同的两点M、N,问是否存在直线l,使G平分线段MN,证明你的结论解(1)如图,设双曲线方程为=1由已知得,解得a2=9,b2=12所以所求双曲线方程为=1(2)P、A1、A2的坐标依次为(6,6)、(3,0)、(3,0),其重心G的坐标为(2,2)假设存在直线l,使G(2,2)平分线段MN,设M(x1,y1),N(x2,y2)则有,kl=l的方程为y= (x2)+2,由,消去y,整理得x24x+28=0=164280,所求直线l不存在2已知双曲线,问过点A(1,1)能否作直线,使与双曲线交于P、Q两点,并且A为线段PQ的中点?若存在,求出直线的方程,若不存在,说明理由。错解设符合题意的直线存在,并设、则(1)得因为A(1,1)为线段PQ的中点,所以将(4)、(5)代入(3)得若,则直线的斜率所以符合题设条件的直线存在。其方程为剖析在(3)式成立的前提下,由(4)、(5)两式可推出(6)式,但由(6)式不能推出(4)(5)两式,故应对所求直线进行检验,上述错解没有做到这一点,故是错误的。应在上述解题的基础上,再由得根据,说明所求直线不存在。3已知点N(1,2),过点N的直线交双曲线于A、B两点,且(1)求直线AB的方程;(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?为什么?解:(1)设直线AB:代入得()令A(x1,y1),B(x2,y2),则x1、x2是方程的两根且N是AB的中点k = 1 AB方程为:y = x + 1(2)将k = 1代入方程()得或由得,CD垂直平分ABCD所在直线方程为即代入双曲线方程整理得令,及CD中点则, |CD| =,即A、B、C、D到M距离相等A、B、C、D四点共圆4.已知椭圆和双曲线有公共的焦点,(1)求双曲线的渐近线方程(2)直线过焦点且垂直于x轴,若直线与双曲线的渐近线围成的三角形的面积为,求双曲线的方程 解析(1)依题意,有,即,即双曲线方程为,故双曲线的渐近线方程是,即,(2)设渐近线与直线交于A、B,则,解得即,又,双曲线的方程为5.已知是双曲线的左,右焦点,点是双曲线右支上的一个动点,且的最小值为,双曲线的一条渐近线方程为. 求双曲线的方程;解析,.的一条渐进线方程为 ,又 由得6.已知中心在原点的双曲线C的右焦点为,右顶点为.()求双曲线C的方程()若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围解(1)设双曲线方程为由已知得,再由,得故双曲线的方程为.(2)将代入得 由直线与双曲线交与不同的两点得 即且. 设,则,由得,而.于是,即解此不等式得 由+得故的取值范围为7 已知双曲线C:的两个焦点为,点P是双曲线C上的一点,且(1)求双曲线的离心率;(2)过点P作直线分别与双曲线的两渐近线相交于两点,若,求双曲线C的方程(1)设,则,(2)由(1)知,故,从而双曲线的渐近线方程为,依题意,可设,由,得 由,得,解得点在双曲线上,又,上式化简得 由,得,从而得故双曲线C的方程为XOY5-528已知动圆与圆C1:(x+5)2+y2=49和圆C2:(x-5)2+y2=1都外切,(1)求动圆圆心P的轨迹方程。 解:(1)从已知条件可以确定圆C1、C2的圆心与半径。两圆外切可得:两圆半径和圆心距动圆半径r,依题意有7r|PC1|,1r|PC2|,两式相减得:|PC1|PC2|6|C1C2|。由双曲线定义得:点P的轨迹是以C1、C2为焦点的双曲线的右支。(x3)(2)若动圆P与圆C2内切,与圆C1外切,则动圆圆心P的轨迹是(双曲线右支)若动圆P与圆C1内切,与圆C2外切,则动圆圆心P的轨迹是(双曲线左支)若把圆C1的半径改为1,那么动圆P的轨迹是。(两定圆连心线的垂直平分线)18已知直线与双曲线交于、点。(1)求的取值范围;(2)若以为直径的圆过坐标原点,求实数的值;(3)是否存在这样的实数,使、两点关于直线对称?若存在,请求出的值;若不存在,说明理由。解:(1)由消去,得(1)依题意即且(2)(2)设,则 以AB为直径的圆过原点 但由(3)(4), 解得且满足(2)(3)假设存在实数,使A、B关于对称,则直线与垂直 ,即 直线的方程为将代入(3)得 AB中点的横坐标为2 纵坐标为但AB中点不在直线上,即不存在实数,使A、B关于直线对称。9(1)椭圆C:(ab0)上的点A(1,)到两焦点的距离之和为4,求椭圆的方程; (2)设K是(1)中椭圆上的动点, F1是左焦点, 求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两点,P是椭圆上任意一点, 当直线PM、PN的斜率都存在并记为kPM、kPN时,那么是与点P位置无关的定值。试对双曲线 写出具有类似特性的性质,并加以证明。解:(1) (2)设中点为(x,y), F1(-1,0) K(-2-x,-y)在上 (3)设M(x1,y1), N(-x1,-y1), P(xo,yo), xox1则 为定值.10. 已知双曲线方程为与点P(1,2),(1)求过点P(1,2)的直线的斜率的取值范围,使直线与双曲线有一个交点,两个交点,没有交点。 (2) 过点P(1,2)的直线交双曲线于A、B两点,若P为弦AB的中点,求直线AB的方程;(3)是否存在直线,使Q(1,1)为被双曲线所截弦的中点?若存在,求出直线的方程;若不存在,请说明理由。解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()当2k2=0,即k=时,方程(*)有一个根,l与C有一个交点()当2k20,即k时=2(k22k)24(2k2)(k2+4k6)=16(32k)当=0,即32k=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论