




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十四) 演绎推理层级一学业水平达标1下面说法:演绎推理是由一般到特殊的推理;演绎推理得到的结论一定是正确的;演绎推理的一般模式是“三段论”的形式;演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;运用三段论推理时,大前提和小前提都不可以省略其中正确的有()A1个B2个C3个 D4个解析:选C都正确2若三角形两边相等,则该两边所对的内角相等,在ABC中,ABAC,所以在ABC中,BC,以上推理运用的规则是()A三段论推理 B假言推理C关系推理 D完全归纳推理解析:选A三角形两边相等,则该两边所对的内角相等(大前提),在ABC中,ABAC,(小前提),在ABC中,BC(结论),符合三段论推理规则,故选A.3推理过程“大前提:_,小前提:四边形ABCD是矩形结论:四边形ABCD的对角线相等”应补充的大前提是()A正方形的对角线相等B矩形的对角线相等C等腰梯形的对角线相等D矩形的对边平行且相等解析:选B由三段论的一般模式知应选B.4若大前提是:任何实数的平方都大于0,小前提是:aR,结论是:a20,那么这个演绎推理出错在()A大前提 B小前提C推理过程 D没有出错解析:选A要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,若这几个方面都正确,才能得到这个演绎推理正确因为任何实数的平方都大于0,又因为a是实数,所以a20,其中大前提是:任何实数的平方都大于0,它是不正确的5在证明f(x)2x1为增函数的过程中,有下列四个命题:增函数的定义是大前提;增函数的定义是小前提;函数f(x)2x1满足增函数的定义是大前提;函数f(x)2x1满足增函数的定义是小前提其中正确的命题是()A BC D解析:选A根据三段论特点,过程应为:大前提是增函数的定义;小前提是f(x)2x1满足增函数的定义;结论是f(x)2x1为增函数,故正确6求函数y 的定义域时,第一步推理中大前提是有意义时,a0,小前提是 有意义,结论是_解析:由三段论方法知应为log2x20.答案:log2x207某一三段论推理,其前提之一为肯定判断,结论为否定判断,由此可以推断,该三段论的另一前提必为_判断解析:根据三段论的特点,三段论的另一前提必为否定判断答案:否定8函数y2x5的图象是一条直线,用三段论表示为:大前提:_.小前提:_.结论:_.解析:本题忽略了大前提和小前提大前提为:一次函数的图象是一条直线小前提为:函数y2x5为一次函数结论为:函数y2x5的图象是一条直线答案:一次函数的图象是一条直线y2x5是一次函数函数y2x5的图象是一条直线9将下列演绎推理写成三段论的形式(1)菱形的对角线互相平分(2)奇数不能被2整除,75是奇数,所以75不能被2整除解:(1)平行四边形的对角线互相平分(大前提);菱形是平行四边形(小前提);菱形的对角线互相平分(结论)(2)一切奇数都不能被2整除(大前提);75是奇数(小前提);75不能被2整除(结论)10下面给出判断函数f(x)的奇偶性的解题过程:解:由于xR,且1.f(x)f(x),故函数f(x)为奇函数试用三段论加以分析解:判断奇偶性的大前提“若xR,且f(x)f(x),则函数f(x)是奇函数;若xR,且f(x)f(x),则函数f(x)是偶函数”在解题过程中往往不用写出来,上述证明过程就省略了大前提解答过程就是验证小前提成立,即所给的具体函数f(x)满足f(x)f(x)层级二应试能力达标1论语学路篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”上述推理用的是()A类比推理B归纳推理C演绎推理 D一次三段论解析:选C这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式2有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为()A大前提错误 B小前提错误C推理形式错误 D非以上错误解析:选C用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则3如图,设平面EF,AB,CD,垂足分别是点B,D,如果增加一个条件,就能推出BDEF,这个条件不可能是下面四个选项中的()AACBACEFCAC与BD在内的射影在同一条直线上DAC与,所成的角相等解析:选D只要能推出EFAC即可说明BDEF.当AC与,所成的角相等时,推不出EFAC,故选D.4f(x)是定义在(0,)上的非负可导函数,且满足xf(x)f(x)0.对任意正数a,b,若ab,则必有()Abf(a)af(b) Baf(b)bf(a)Caf(a)f(b) Dbf(b)f(a)解析:选B构造函数F(x)xf(x),则F(x)xf(x)f(x)由题设条件知F(x)xf(x)在(0,)上单调递减若ab,则F(a)F(b),即af(a)bf(b)又f(x)是定义在(0,)上的非负可导函数,所以bf(a)af(a)bf(b)af(b)故选B.5已知函数f(x)a,若f(x)为奇函数,则a_.解析:因为奇函数f(x)在x0处有定义且f(0)0(大前提),而奇函数f(x)a的定义域为R(小前提),所以f(0)a0(结论)解得a.答案:6已知f(1,1)1,f(m,n)N*(m,nN*),且对任意m,nN*都有:f(m,n1)f(m,n)2;f(m1,1)2f(m,1)给出以下三个结论:(1)f(1,5)9;(2)f(5,1)16;(3)f(5,6)26.其中正确结论为_解析:由条件可知,因为f(m,n1)f(m,n)2,且f(1,1)1,所以f(1,5)f(1,4)2f(1,3)4f(1,2)6f(1,1)89.又因为f(m1,1)2f(m,1),所以f(5,1)2f(4,1)22f(3,1)23f(2,1)24f(1,1)16,所以f(5,6)f(5,1)1024f(1,1)1026.故(1)(2)(3)均正确答案:(1)(2)(3)7已知yf(x)在(0,)上有意义、单调递增且满足f(2)1,f(xy)f(x)f(y)(1)求证:f(x2)2f(x);(2)求f(1)的值;(3)若f(x)f(x3)2,求x的取值范围解:(1)证明:f(xy)f(x)f(y),(大前提)f(x2)f(xx)f(x)f(x)2f(x)(结论)(2)f(1)f(12)2f(1),(小前提)f(1)0.(结论)(3)f(x)f(x3)f(x(x3)22f(2)f(4),(小前提)函数f(x)在(0,)上单调递增,(大前提)解得0x1.(结论)8已知a,b,m均为正实数,ba,用三段论形式证明.证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)ba,m0,(小前提)所以mbma.(结论)因为不等式两边同加上一个数,不等号不改变方向,(大前提)mbma,(小前提)所以mbabmaab,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国小立摆锯市场调查研究报告
- 2025至2030年中国小型识别灯箱市场调查研究报告
- 2025至2030年中国小区对讲机市场分析及竞争策略研究报告
- 2025至2030年中国叠梁门市场调查研究报告
- 2025至2030年中国反击式破碎机市场现状分析及前景预测报告
- 2025至2030年中国双速直流电机数据监测研究报告
- 2025至2030年中国双叉型工具行业投资前景及策略咨询研究报告
- 2025年中国甲骨文压花镜行业市场发展前景及发展趋势与投资战略研究报告
- 智能交通系统在环境保护中的作用研究
- 新能源汽车配件的供应链管理研究
- 幼儿园小班班本课程果然有趣
- 《黑神话:悟空》跨文化传播策略与路径研究
- 消防设施操作和维护保养规程
- 医疗器械委托生产质量协议模版
- (高清版)AQ 2065-2018 地下运矿车安全检验规范
- 2024年典型事故案例警示教育手册15例
- DL∕T 1882-2018 验电器用工频高压发生器
- 2024年北京电子科技职业学院高职单招笔试历年职业技能测验典型例题与考点解析含答案
- 大学生心理健康教育(山东联盟)智慧树知到期末考试答案章节答案2024年德州学院
- 标准航海用语
- 稀土矿采选安全事故防范与应急管理
评论
0/150
提交评论