高考数学压轴卷理4_第1页
高考数学压轴卷理4_第2页
高考数学压轴卷理4_第3页
高考数学压轴卷理4_第4页
高考数学压轴卷理4_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2017全国卷高考压轴卷理科数学本试卷分第卷(选择题)和第卷(非选择题)两部分。注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。2.第卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。第卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。3.考试结束,监考员将试题卷、答题卡一并收回。第卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.设集合,则()A B C D2复数(为虚数单位),则复数的共轭复数为( )ABCD3.袋中有大小、形状相同的红球、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球若摸到红球时得2分,摸到黑球时得1分,则3次摸球所得总分为5的概率为()A. B.C D.4已知向量与向量a(1,2)的夹角为,|2,点A的坐标为(3,4),则点B的坐标为()A(1,0) B(0,1) C(5,8) D(8,5)5.已知点P落在角的终边上,且10,2),则的值为()A.B.C.D.6.九章算术是我国古代著名数学经典其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分)已知弦AB1尺,弓形高CD1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈10尺100寸,3.14,sin 22.5)A600立方寸 B610立方寸 C620立方寸 D633立方寸7已知MOD函数是一个求余函数,记表示m除以n的余数,例如右图是某个算法的程序框图,若输入m的值为48时,则输出的值为(A) 8(B) 9(C) 10(D) 118已知由不等式确定的平面区域的面积为7,则的值()A-1或3 B C D39.已知双曲线与函数的图象交于点,若函数的图象在点处的切线过双曲线左焦点,则双曲线的离心率是A. B. C. D. 10.设在圆上运动,且,点在直线上运动,则的最小值为A B C D 11已知球表面上有三个点、满足,球心到平面的距离等于球半径的一半,则球的表面积为(A) (B) (C) (D)12关于函数,下列说法错误的是()(A)是的极小值点( B ) 函数有且只有1个零点 (C)存在正实数,使得恒成立(D)对任意两个正实数,且,若,则第卷注意事项:须用黑色墨水签字笔在答题卡上作答。若在试卷上作答,答案无效。本卷包括必考题和选考题两部分。第13题第21题为必考题,每个试题考生都必须作答。第22题 第23题为选考题,考生根据要求做答。二.填空题:本大题共4小题,每小题5分13.已知中,内角的对边分别为,若,则的面积为14若的展开式中各项系数的和2,则该展开式中的常数项为_15.已知f(x)为奇函数,函数g(x)与f(x)的图象关于直线y=x+l对称,若g(1)=4,则f(一3)=_16设函数f(x)(x2)2(xb)ex,若x2是f(x)的一个极大值点,则实数b的取值范围_三、解答题:解答应写出文字说明,证明过程或演算步骤。17.(本小题满分12分)已知数列中,其前项的和为,且满足.(1)求证:数列是等差数列;(2)证明:当时,. 18. (本小题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一个年度未发生有责任道路交通事故下浮10%上两个年度未发生有责任道路交通事故下浮20%上三个及以上年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任道路交通事故上浮10%上一个年度发生有责任道路交通死亡事故上浮30%某机构为了某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型数量105520155以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国机动车交通事故责任强制保险条例汽车交强险价格的规定,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值19(本小题满分12分)如图,是平行四边形,平面,,,. ,分别为,的中点(1)求证:;(2)求平面与平面所成锐二面角的余弦值。20. (本小题满分12分)设是椭圆上三个点,在直线上的射影分别为(1)若直线过原点,直线斜率分别为,求证:为定值;(2)若不是椭圆长轴的端点,点坐标为,与面积之比为5,求中点的轨迹方程21(本小题满分12分)定义在上的函数满足,. (1)求函数的解析式;(2)求函数的单调区间;(3)如果、满足,那么称比更靠近.当且时,试比较和哪个更靠近,并说明理由. 请考生在第22、23、题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22(本小题满分10分)选修44:极坐标与参数方程在直角坐标系中,圆的参数方程为(为参数). (1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)已知,圆上任意一点,求面积的最大值.23(本小题满分10分)已知,且(1)证明;(2)若,求的最小值2017全国卷高考压轴卷理科数学题号123456789101112答案BACADDBBACDC以下为部分试题解析1.解得集合A为 集合B为y的值域1-1,0,选B3解析三次摸球一共有8种不同的情况,列举如下:(红、红、红),(红、红、黑),(红、黑、红),(红、黑、黑),(黑、红、红),(黑、红、黑),(黑、黑、红),(黑、黑、黑),记“3次摸球所得总分为5”为事件A,则事件A包含的基本事件为:(红、红、黑),(红、黑、红),(黑、红、红),共3种情况,故所求的概率P(A).4. 1解析设B(x,y),则(x3,y4),由已知得(x3)2(y4)2(2)2,cos1,即x2y10,联立两方程解得,B(1,0)5.解析由sin0,cos0知角是第四象限的角,tan1,10,2),.6. 1解析 连接OA、OB,OD,设的半径为R,则(R1)252R2,R13.sinAOD. AOD22.5,即AOB45.S弓形ACBS扇形OACBSOAB10126.33平方寸该木材镶嵌在墙中的体积为VS弓形ACB100633立方寸选D.7.【解析】作出不等式组表示的平面区域,如图所示,可知其围成的区域是等腰直角三角形且面积为由于直线恒过点,且原点的坐标恒满足,当时,此时平面区域的面积为,由于,由此可得由可得,依题意应有,解得或(舍去),故选B9.【试题解析】A设,切线的斜率为,又在点处的切线过双曲线左焦点,解得,因此,故双曲线的离心率是,故选A;10.试题分析:设的中点为,由平行四边形法则可知所以当且仅当三点共线时,取得最小值,此时直线,因为圆心到直线的距离为,所以取得最小值为12【答案】C【解析】,且当时,函数递减,当时,函数递增,因此是的极小值点,A正确;,所以当时,恒成立,即单调递减,又,所以有零点且只有一个零点,B正确;设,易知当时,对任意的正实数,显然当时,即,所以不成立,C错误;作为选择题这时可得结论,选C,下面对D研究,画出函数草图可看出(0,2)的时候递减的更快,所以13,又,的面积为14.试题分析:由题意得,因此该展开式中的常数项为15.-216答案b2解析由条件得,f(x) 1x3(b4)x2(44b)x4bex,则f(x)1x3(b1)x2(42b)x4ex,易知f(2)0恒成立,满足题意记g(x)x3(b1)x2(42b)x4,则g(x)3x22(b1)x(42b),又x2是f(x)的一个极大值点,g(2)0,2b40,解得b2.17.解:(1)当时,从而构成以1为首项,2为公差的等差数列.(6分)(2)由(1)可知,当时,从而.18.(1)由题意可知:的可能取值为由统计数据可知:,所以的分布列为:X0.9a0.8a0.7aa1.1a1.3aP所以(2)由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为,三辆车中至多有一辆事故车的概率为设为该销售商购进并销售一辆二手车的利润,的可能取值为-5000,10000所以的分布列为:Y-500010000P所以所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为万元19解:(1)证明:如图19-11分2分而3分5分6分(2)法1:如图19-2,设的中点为,连结,. 易知所以四点共面,分别为,的中点7分同理又8分二面角即为平面与平面所成的锐二面角 9分,10分且就是平面与平面所成锐二面角的一个平面角 11分 12分法2:如图19-3,设的中点为,连结,.作于点易知所以四点共面 7分又8分9分又由(1)知的法向量10分11分设平面与平面所成锐二面角的大小为,则 12分法3:如图19-4, 1分又2分建立如右图所示坐标系,则, 4分(1) 5分6分(2) 设的一个法向量为,则由得 7分解得 8分又而,平面,为平面的一个法向量 10分 11分平面FGH与平面EBC所成锐二面角的余弦值为 12分20.(1)设,则又,两式相减得:,即(2)设直线与轴相交于点,由于且,得,(舍去)或即直线经过点,设,当直线垂直于轴时,弦中点为当直线与轴不垂直时,设的方程为,则,消去,整理得:综上所述,点的轨迹方程为.21解(1)f(x)f(1)e2x22x2f(0),f(1)f(1)22f(0),即f(0)1.又f(0)e2,f(1)2e2,f(x)e2xx22x.(2)f(x)e2xx22x,g(x)fx2(1a)xaexx2xx2(1a)xaexa(x1),g(x)exa.当a0时,g(x)0,函数g(x)在R上单调递增;当a0时,由g(x)exa0得xln a,x(,ln a)时,g(x)0,g(x)单调递减;x(ln a,)时,g(x)0,g(x)单调递增综上,当a0时,函数g(x)的单调递增区间为(,);当a0时,函数g(x)的单调递增区间为(ln a,),单调递减区间为(,ln a)(3)设p(x)ln x(x1),q(x)ex1aln x(x1),p(x)0,p(x)在11,)上为减函数,又p(e)0,当1xe时,p(x)0,当xe时,p(x)0.q(x)ex1,(q(x)ex10,q(x)在11,)上为增函数,又q(1)0,x11,)时,q(x)0,q(x)在11,)上为增函数,q(x)q(1)a10.当1xe时,|p(x)|q(x)|p(x)q(x)ex1a,设m(x)ex1a,则m(x)ex10,m(x)在11,)上为减函数,m(x)m(1)e1a,a2,m(x)0,|p(x)|q(x)|,比ex1a更靠近ln x.当xe时,|p(x)|q(x)|p(x)q(x)2ln xex1a2ln xex1a,设n(x)2ln xex1a,则n(x)ex1,(n(x)ex10,n(x)在xe时为减函数,n(x)n(e)ee10,n(x)在xe时为减函数,n(x)n(e)2aee

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论