




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散锐角三角函数(2)教学目标 (一)教学知识点 1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义. 2.能够运用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形中的边角关系,进行简单的计算. 4.理解锐角三角函数的意义. (二)能力训练要求 1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力. (三)情感与价值观要求 1.积极参与数学活动,对数学产生好奇心和求知欲. 2.形成合作交流的意识以及独立思考的习惯教学重点 1.理解锐角三角函数正弦、余弦的意义,并能举例说明. 2.能用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形的边角关系,进行简单的计算.教学难点 用函数的观点理解正弦、余弦和正切.教学方法 探索交流法.教具准备 多媒体演示.教学过程 .创设情境,提出问题,引入新课 我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切. 现在我们提出两个问题: 当直角三角形中的锐角确定之后,其他边之间的比也确定吗? 梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系? .讲授新课 1.正弦、余弦及三角函数的定义 多媒体演示如下内容:想一想:如图(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?(2) 有什么关系? 呢?(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答. A1C1BC1,A2C2BC2,A1C1/A2C2.RtBA1C1RtBA2C2. (相似三角形对应边成比例). 由于A2是梯子A1B上的任意点,所以,如果改变A2在梯子A1B上的位置,上述结论仍成立. 由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大小无关. 如果改变梯子A1B的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比值,邻边与斜边的比值随之改变. 我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢? 函数关系. 很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示) 在RtABC中,如果锐角A确定,那么A的对边与斜边的比、邻边与斜边的比也随之确定.如图,A的对边与邻边的比叫做A的正弦(sine),记作sinA,即 sinA A的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即 cosA= 锐角A的正弦、余弦和正切都是A的三角函数(trigonometricfunction). 你能用自己的语言解释一下你是如何理解“sinA、cosA、tanA都是之A的三角函数”呢? 我们在前面已讨论过,当直角三角形中的锐角A确定时.A的对边与斜边的比值,A的邻边与斜边的比值,A的对边与邻边的比值也都唯一确定.在“A的三角函数”概念中,A是自变量,其取值范围是0A90;三个比值是因变量.当A变化时,三个比值也分别有唯一确定的值与之对应. 2.梯子的倾斜程度与sinA和cosA的关系 我们上一节知道了梯子的倾斜程度与tanA有关系:tanA的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA、cosA有关系呢?如果有关系,是怎样的关系?19如图所示,ABA1B1,在RtABC中,sinA=,在RtA1B1C中,sinA1=. , 即sinAcosA1, 所以梯子的倾斜程度与cosA也有关系.cosA的值越小,梯子越陡. 同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切. 3.例题讲解 多媒体演示.如图,在RtABC中,B=90,AC200.sinA0.6,求BC的长. 分析:sinA不是“sin”与“A”的乘积,sinA表示A所在直角三角形它的对边与斜边的比值,已知sinA0.6,0.6. 解:在RtABC中,B90,AC200. sinA0.6,即=0.6,BCAC0.62000.6=120. 思考:(1)cosA? (2)sinC? cosC? (3)由上面计算,你能猜想出什么结论? 解:根据勾股定理,得 AB=160. 在RtABC中,CB90. cosA0.8, sinC= =0.8, cosC 0.6, 由上面的计算可知 sinAcosCO.6, cosAsinC0.8. 因为A+C90,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”.做一做:如图,在RtABC中,C=90,cosA,AC10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90-A)cosA,cos(90-A)=sinA. 解:在RtABC中,C90,AC=10,cosA,cosA,AB=,sinB根据勾股定理,得BC2AB2-AC2()2-102=BC.cosB,3.(2003年陕西)(补充练习)在ABC中.C=90,若tanA=,则sinA= . 解:如图,tanA=.设BC=x,AC=2x,根据勾股定理,得AB=.sinA=.课时小结本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A的三角函数概念中,A是自变量,其取值范围是0A90;三个比值是因变量.当A确定时,三个比值分别唯一确定;当A变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题. .课后作业 习题1、2第1、2、3、4题 .活动与探究已知:如图,CD是RtABC的斜边AB上的高,求证:BC2ABBD.(用正弦、余弦函数的定义证明) 根据正弦和余弦的定义,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一个直角三角形中,在RtABC中,CDAB.所以图中含有三个直角三角形.例如B既在RtBDC中,又在RtABC中,涉及线段BC、BD、AB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校六一儿童节创意活动方案2025年
- 2025年电子胶布项目可行性研究报告
- 2025年瓦机配件项目可行性研究报告
- 2025年环保型水剂复膜贴合机项目可行性研究报告
- 2025年特灭威项目可行性研究报告
- 2025年燃油箱开关项目可行性研究报告
- 南京大学金陵学院《JavaScript与jQuery开发》2023-2024学年第二学期期末试卷
- 九江学院《中医临床科研方法》2023-2024学年第二学期期末试卷
- 临沂科技职业学院《化工原理》2023-2024学年第二学期期末试卷
- 盐城工学院《医用治疗仪器》2023-2024学年第二学期期末试卷
- 全国统一卷试题及答案
- 银行防抢防暴课件
- 水电工程验收单
- 兰州2025年中国农业科学院兰州畜牧与兽药研究所招聘16人笔试历年参考题库附带答案详解
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(701-800题)
- 《哈哈镜笑哈哈》名师课件2022
- 传统皮影戏在小学艺术教育的应用与创新实践
- 2025年国家会展中心上海有限责任公司招聘笔试参考题库含答案解析
- 《大数据时代对会计行业产生的影响探究》10000字【论文】
- 保险精算师述职报告
- 2022浪潮英政服务器CS5260H2用户手册
评论
0/150
提交评论