nature给青年科研工作者的忠告_第1页
nature给青年科研工作者的忠告_第2页
nature给青年科研工作者的忠告_第3页
nature给青年科研工作者的忠告_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NATURE 上 给 青 年 科 研 工 作 者 的 几 条 忠 告 (ZZ) Nature 426, 389 (27 November 2003); doi:10.1038/426389a Scientist: Four golden lessons STEVEN WEINBERG Steven Weinberg is in the Department of Physics, the University of Texas at Austin, Texas 78712, USA. This essay is based on a commencement talk given by the author at the Science Convocation at McGill University in June 2003. When I received my undergraduate degree about a hundred years ago the physics literature seemed to me a vast, unexplored ocean, every part of which I had to chart before beginning any research of my own. How could I do anything without knowing everything that had already been done? Fortunately, in my first year of graduate school, I had the good luck to fall into the hands of senior physicists who insisted, over my anxious objections, that I must start doing research, and pick up what I needed to know as I went along. It was sink or swim. To my surprise, I found that this works. I managed to get a quick PhD though when I got it I knew almost nothing about physics. But I did learn one big thing: that no one knows everything, and you dont have to. Another lesson to be learned, to continue using my oceanographic metaphor, is that while you are swimming and not sinking you should aim for rough water. When I was teaching at the Massachusetts Institute of Technology in the late 1960s, a student told me that he wanted to go into general relativity rather than the area I was working on, elementary particle physics, because the principles of the former were well known, while the latter seemed like a mess to him. It struck me that he had just given a perfectly good reason for doing the opposite. Particle physics was an area where creative work could still be done. It really was a mess in the 1960s, but since that time the work of many theoretical and experimental physicists has been able to sort it out, and put everything (well, almost everything) together in a beautiful theory known as the standard model. My advice is to go for the messes thats where the action is. My third piece of advice is probably the hardest to take. It is to forgive yourself for wasting time. Students are only asked to solve problems that their professors (unless unusually cruel) know to be solvable. In addition, it doesnt matter if the problems are scientifically important they have to be solved to pass the course. But in the real world, its very hard to know which problems are important, and you never know whether at a given moment in history a problem is solvable. At the beginning of the twentieth century, several leading physicists, including Lorentz and Abraham, were trying to work out a theory of the electron. This was partly in order to understand why all attempts to detect effects of Earths motion through the ether had failed. We now know that they were working on the wrong problem. At that time, no one could have developed a successful theory of the electron, because quantum mechanics had not yet been discovered. It took the genius of Albert Einstein in 1905 to realize that the right problem on which to work was the effect of motion on measurements of space and time. This led him to the special theory of relativity. As you will never be sure which are the right problems to work on, most of the time that you spend in the laboratory or at your desk will be wasted. If you want to be creative, then you will have to get used to spending most of your time not being creative, to being becalmed on the ocean of scientific knowledge. Finally, learn something about the history of science, or at a minimum the history of your own branch of science. The least important reason for this is that the history may actually be of some use to you in your own scientific work. For instance, now and then scientists are hampered by believing one of the over-simplified models of science that have been proposed by philosophers from Francis Bacon to Thomas Kuhn and Karl Popper. The best antidote to the philosophy of science is a knowledge of the history of science. More importantly, the history of science can make your work seem more worthwhile to you. As a scientist, youre probably not going to get rich. Your friends and relatives probably wont understand what youre doing. And if you work in a field like elementary particle physics, you wont even have the satisfaction of doing something that is immediately useful. But you can get great satisfaction by recognizing that your work in science is a part of history. Look back 100 years, to 1903. How important is it now who was Prime Minister of Great Britain in 1903, or President of the United States? What stands out as really important is that at McGill University, Ernest Rutherford and Frederick Soddy were working out the nature of radioactivity. This work (of course!) had practical applications, but much more important were its cultural implications. The understanding of radioactivity allowed physicists to explain how the Sun and Earths cores could still be hot after millions of years. In this way, it removed the last scientific objection to what many geologists and paleontologists thought was the great age of the Earth and the Sun. After this, Christians and Jews either had to give up belief in the literal truth of the Bible or resign themselves to intellectual irrelevance. This was just one step in a sequence of steps from Galileo through Newton and Darwin to the present that, time after time, has weakened the hold of religious dogmatism. Reading any newspaper nowadays is enough to show you that this work is not yet complete. But it is civilizing work, of which scientists are able to feel proud. Nature上给青年科研工作者的几条忠告 Steven Weinberg:四条黄金忠告 Steven Weinberg 现在得克萨斯大学物理系。本文以他 2003 年 6 月在麦克基尔大学科学大会上的讲话为基础。 当我得到大学学位的时候 那是百八十年前的事了 物理文献在我眼里就象一个未经探索的汪洋大海,我必 须在勘测了它的每一个部分之后才能开始自己的研究。做任何事情之前怎么能不先了解所有已经做过了的工作 呢?万幸的是,在我做研究生的第一年,我碰到了一些资深的物理学家,他们不顾我忧心忡忡的反对,坚持我 应该开始进行研究,而在研究的过程中学习所需的东西。这可是生死悠关的事。我惊讶地发现他们的意见是可 行的。我设法很快就拿到了一个博士学位 虽然我拿到博士学位时对物理学还几乎是一无所知。不过,我的确 得到了一个很大的教益:没有人了解所有的知识,你也不必。 另一个忠告就是,如果继续用我的海洋学的比喻的话,当你在大海中搏击而不是沉没时,应该到波涛汹涌的地 方去。19 世纪 60 年代末,我在麻省理工大学教书时,一个学生找我说,他想去做广义相对论领域的研究,而 不愿意做我所在的领域基本粒子物理学方向的研究,原因是前者的原理已经很清楚,而后者在他看来则是 一团乱麻。而在我看来这正是做相反决定的绝好理由。粒子物理学是一个还可以做创造性工作的领域。它在那 个时候的确是乱麻一团,但是,从那时起,许多理论物理学家、试验物理学家的工作把这团乱麻梳理出来,将 所有的(嗯,几乎所有的)知识纳入一个叫做标准模型的美丽的理论之中。我的忠告是:到混乱的地方去,那 里才是行动所在的地方。 我的第三个忠告可能是最难被接受的。这就是要原谅自己虚掷时光。要求学生们解决的问题都是教授们知道可 以得到解决的问题(除非教授非常地残酷) 。而且,这些问题在科学上是否重要是无关紧要的,必须解决他们 以通过考试。但是在现实生活中,知道哪些问题重要是非常困难的,而且在历史某一特定时刻你根本无从知道 某个问题是否有解。二十世纪初,几个重要的物理学家,包括 Lorentz 和 Abraham, 想创立一种电子理论。部 分原因是为了理解为什么探测地球相对以太运动的所有尝试都失败了。我们现在知道,他们研究的问题不对。 在当时,没有人能够创立一个成功的电子理论,因为量子力学尚未发现。需要到 1905 年,天才的爱因斯坦认识 到正确的问题是运动在时间空间测量上的效应。沿着这条路线,他创立了相对论。因为你总也不能肯定哪个才 是要研究的正确问题,你在实验室里,在书桌前的大部分时间是会虚掷的。 如果你想要有创造性,你

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论