




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西历年高考数学题(理科)-解析几何 2009 年江西省高考数学理科 6过椭圆 21xyab ( 0)的左焦点 1F作 x轴的垂线交椭圆于点 P, 2F为右焦点, 若 120FP,则椭圆的离心率为( ) A B 3 C 12 D 13 21 (本小题满分 12 分) 已知点 10(,)Pxy为双曲线 218xyb ( b为正常数)上任一 点, 2F为双曲线的右焦点,过 1P作右准线的垂线,垂足为 A,连接A 并延长交 y轴于 2. (1) 求线段 1的中点 的轨迹 E的方程; (2) 设轨迹 E与 x轴交于 BD、 两点,在 上任取一点1,(0)Qy( ) ,直线 Q, 分别交 y轴于 MN, 两点. 求证:以 MN为直径的圆过两定点 . 2F1OyxA2P 2009 年江西省高考数学理科 答案 6. 因为 2(,)bPca ,再由 1260FP有 23,ba 从而可得 3cea,故选 B 21解: (1) 由已知得 2083Ay( , ) , ( , ) ,则直线 2FA的方程为: 0()yxb, 令 0x得 09y,即 0(,), 设 P( , ) ,则 00 25xyy ,即 25xy 代入 2018xyb 得: 24185xyb , 即 的轨迹 E的方程为 221xb . (2) 在 2215xyb 中令 0y得 2b,则不妨设 -2020BbDb( , ) , ( , ) , 于是直线 QB的方程为: 1()x, 直线 Q的方程为: 1(-)yx, 则 112-200bybyMNxx( , ) , ( , ) , 则以 为直径的圆的方程为: 2112- 0-ybyxbx( ) ( ) , 令 0y得: 21byx ,而 1,Q( ) 在 225 上,则 22115y, 于是 5,即以 MN为直径的圆过两定点 (,0),b. 2010 年江西省高考数学理科 8直线 y=kx+3 与圆 + = 4 相交于 M , N 两点,若 2 ,则 k 的取23x2y 3 值范围是( ) A B C D3,04,0,3,0 15点 在双曲线 的右支上,若点 到右焦点的距离等于 ,则0(,)xy2143xyA02x ;0 21 (本小题满分 12 分) 已知抛物线 : 经过椭圆 : 的两个焦点.1C22xby2C21(0)xyab (1) 求椭圆 的离心率;2 (2) 设 ,又 为 与 不在 轴上的两个交点,(3,)Qb,MN12y 若 的重心在抛物线 上,求 和 的方程.C12 2010 年江西省高考数学理科 答案 NxQMOy 8.A 15. 2 21、 (本小题满分 12 分) 解: (1)因为抛物线 经过椭圆 的两个焦点 ,可得 ,由2C112(,0)(,Fc2cb ,有 ,所以椭圆 的离心率 。2abc2ca1Ce (2)由题设可知 关于 y 轴对称,设 ,则由 的,MN1,(,)()0MxyNxAMN 垂心为 B,有 ,0A 所以 2113()(4xyb 由于点 在 上,故有 ,N2C221xby 由得 或 (舍去) ,1x1y 所以 ,故152b5(,)N244bbM5( ,-)2 所以 的重心为QNA3, 因重心在 上得: ,所以 =2,2C24bb1(5,)(,)2MN 又因为 在 上,所以 ,得 。,MN1 221)(54a263a 所以椭圆 的方程为: ,1C263xy 抛物线 的方程为: 。224xy 2011 年江西省高考数学理科 9.若曲线 与曲线 有四个不同的交点,则实数0221xyC: 0)(2mxyC: 的取值范围是 ( )m A. B. C. D. 3,)3,(),(3, ),3(),( 14.若椭圆 的焦点在 x 轴上,过点 作圆 的切线,切点分别为12byax )21,(12yx A,B,直线 AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 . 20.(本小题满分 13 分) 是双曲线 : 上一点, 分别是双曲线)(,0axyPE)0,(12bayx NM, 的左、右定点,直线 的斜率之积为 .EPNM,5 (1)求双曲线的离心率; (2)过双曲线 的右焦点且斜率为 1 的直线交双曲线于 两点, 为坐标原点, 为BA,OC 双曲线上的一点,满足 ,求 的值.OBAC 2011 年江西省高考数学理科答案 9.B 14 2154xy 20 (本小题满分 13 分) 解:(1)点 在双曲线 上,0(,)Pxya21xyb 有 20xab 由题意又有 001,5yxa 可得 222305,6,5cbcbea则 (2)联立 设22,41,xyxb得 12(,)(,)AxyB 则 (1) 125,34cbx 设 3121(,),xOCyOABy即 又 C 为双曲线上一点,即 2235,xb 有 2112()5()xy 化简得: (2)2121(5)xxyb 又 在双曲线上,所以12(,)(,)AxyB2,5xy 由(1)式又有 22121212155()45()10xcxxccb 得: 40,.解 出 或 2012 年江西省高考数学理科 13椭圆 1(ab0)的左右顶点分别是 A,B,左右焦点分别是 F1,F 2, x2a2 y2b2 若|AF 1|,|F 1F2|,|F 1B|成等比数列,则此椭圆的离心率为_ 20已知三点 O(0,0),A(2,1),B(2,1),曲线 C 上任意一点 M(x,y )满足 | | ( )2.MA MB OM OA OB (1)求曲线 C 的方程; (2)动点 Q(x0, y0)(2 ,所以 l 与直线 PA,PB 一定相 t 12 x02 1 t2 x02 交 分别联立方程组Error! Error!解得 D,E 的横坐标分 别是 xD ,xE , x20 4t2x0 1 t x20 4t2x0 t 1 则 xE xD(1 t ) . x20 4tx20 t 12 又|FP| t,有 SPDE |FP|xEx D| . x204 12 1 t8 x20 4t2t 12 x20 又 SQAB 4 , 12 (1 x204) 4 x202 于是 SQABSPDE 41 tx20 4x20 t 12x20 4t2 . 41 tx40 4 t 12x20 4t 12x40 8tx20 16t2 对任意 x0( 2,2),要使 为常数,则 t 要满足Error! SQABSPDE 解得 t1,此时 2, SQABSPDE 故存在 t1,使QAB 与 PDE 的面积之比是常数 2. 2013 年江西省高考数学理科 14.抛物线 的焦点为 F,其准线与双曲线 相交于 两点,2(0)xpy213xy,AB 若 为等边三角形,则 ABFP 15(1) 、 (坐标系与参数方程选做题)设曲线 的参数方程为 ( 为参数) ,若以直C2 xty 角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,则曲线 的极坐标方程为 x c 20. (本小题满分 13 分) 如图,椭圆 经过点 2+=1(0)yCab: 离心率 ,直线 的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 25年车间职工安全培训考试试题附完整答案(夺冠)
- 科研项目合同管理流程要求
- 普通话入门培训
- 浙江宁波市北仑区2025届高三第六次模拟考试物理试卷含解析
- 小学四年级英语线上学习计划
- 2024-2025学年新疆昌吉二中高三最后一卷物理试卷含解析
- 2024-2025学年湖南省长沙市岳麓区湖南师范大学附中高三一诊考试物理试卷含解析
- 湘少版英语六年级上册阅读理解提升计划
- 体弱儿童健康监测与评估计划
- 高三班主任学期教师评估计划
- 紫藤花的秘密课件
- 心理健康教育(共35张课件)
- 教案-人工智能通识课-AIGC - 任务11 内容生成之使用Kimi AI进行多文本阅读
- 项目建筑智能化工程施工招标文件模板
- 心理治疗(初级(师)212)相关专业知识卫生专业技术资格考试试题及答案指导(2024年)
- 110kv线路施工方案
- 桥式起重机主梁强刚计算
- 大东鞋业合同协议书
- 犀牛首饰建模课程设计
- 2024陕西西安市长安城乡建设开发限公司招聘50人(高频重点提升专题训练)共500题附带答案详解
- 幼儿园大班语言绘本《猜猜我有多爱你》课件
评论
0/150
提交评论