已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学之三角函数公式三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:锐角三角函数公式sin = 的对边 / 斜边cos = 的邻边 / 斜边tan = 的对边 / 的邻边cot = 的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2 是 sinA 的平方 sin2(A) )三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B降幂公式sin2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=covers(2)/2tan2()=(1-cos(2)/(1+cos(2)推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina*2sincos*2sincos=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2coscos*-2sinsin=-4cosasin(a+30)sin(a-30)=-4cosasinsiin=-4cosacos(60-a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a)/2cos2(a/2)=(1+cos(a)/2tan(a/2)=(1-cos(a)/sin(a)=sin(a)/(1+cos(a)三角和sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+sin = 2 sin cossin-sin = 2 cos sincos+cos = 2 cos coscos-cos = -2 sin sintanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinsin = /2coscos = /2sincos = /2cossin = /2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin(-) = sincos(-) = -cossin(+) = -sincos(+) = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin=2tan(/2)/cos=/1+tan(/2)tan=2tan(/2)/其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《工厂供电》2021-2022学年期末试卷
- 固定总价合同规范要求
- 国药器械销售合同
- 合同保证金遗失声明
- 合同法第三章42条
- 2024年兴安客运从业资格证考试模板
- 2024融资合同股权股份转让协议
- 2024工伤劳动合同范文
- 2024小区绿化工程合同
- 英语阅读记录卡-20210813175455
- 西气东输计量交接凭证填报培训PPT-场站课件
- 中国特色社会主义理论与实践研究知识点整理及思考题答案
- 《居家养老服务问题及对策探究【论文】6000字》
- 三1班反邪教教育主题班会记录
- 5、风电吊装施工指导手册
- 中国邮政储蓄银行招聘考试试题
- 养老院健康体检表
- 韵母教学讲解课件
- 创意知名画家达芬奇个人生平介绍PPT
- 浅谈我校啦啦操队存在的问题以及解决措施
- 餐饮业月度收入支出费用报表
评论
0/150
提交评论