




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.1 常见函数的导数3.2.1常见函数的导数XX 市第二高级中学 朱卫红教学目标:1能根据导数的定义推导部分基本初等函数的导数公式;2能利用导数公式求简单函数的导数教学重点:基本初等函数的导数公式的应用教学过程:一、问题情境1问题情境(1)在上一节中,我们用割线逼近切线的方法引入了导数的概念,那么如何求函数的导数呢?(2)求曲线在某点处的切线方程的基本步骤:求出 p 点的坐标;利用切线斜率的定义求出切线的斜率;利用点斜式求切线方程(3)函数导函数的概念2探究活动用导数的定义求下列各函数的导数:(1) (为常数) ; (2) (为常数) ;(3) ; (4) ;(5) ; (6) ;(7) 思考由上面的结果,你能发现什么规律?(1) ;(2) (为常数) ;(3) ;(4) ;(5) ;(6) ;(7) 二、建构数学1几个常用函数的导数:思考由上面的求导公式(3)(7) ,你能发现什么规律?(8) (为常数) ;(9) (且) ;(10) (且) ;(11) ;(12) ;(13) ;(14) 2基本初等函数的导数:三、数学运用例 1 利用求导公式求下列函数导数(1) ; (2) ; (3); (4) ;(5);(6) ;(7) 例 2 若直线为函数图象的切线,求及切点坐标点评求切线问题的基本步骤:找切点求导数得斜率变式 1 求曲线在点处的切线方程变式 2 求曲线过点的切线方程点评求曲线“在某点”与“过某点”的切线是不一样的变式 3 已知直线,点为上任意一点,求在什么位置时到直线的距离最短四、练习1见课本 p82 练习第 3 题: ;第 5 题:(1) ;(2) ;(3) ;(4) 2见课本 p84 习题第 4 题(1):;3见课本 p85 第 12 题(2) ; 五、回顾小结(1)求函数导数的方法(2)掌握几个常见函数的导数和基本初等函数的导数公式六、课外作业1课本 p84 习题第 2 题2补充(1)在曲线上求一点,使得曲线在该点处的切线的倾斜角为(2)当常数为何值时,直线才能与函数相切?并求出切点3.2.1常见函数的导数XX 市第二高级中学 朱卫红教学目标:1能根据导数的定义推导部分基本初等函数的导数公式;2能利用导数公式求简单函数的导数教学重点:基本初等函数的导数公式的应用教学过程:一、问题情境1问题情境(1)在上一节中,我们用割线逼近切线的方法引入了导数的概念,那么如何求函数的导数呢?(2)求曲线在某点处的切线方程的基本步骤:求出 p 点的坐标;利用切线斜率的定义求出切线的斜率;利用点斜式求切线方程(3)函数导函数的概念2探究活动用导数的定义求下列各函数的导数:(1) (为常数) ; (2) (为常数) ;(3) ; (4) ;(5) ; (6) ;(7) 思考由上面的结果,你能发现什么规律?(1) ;(2) (为常数) ;(3) ;(4) ;(5) ;(6) ;(7) 二、建构数学1几个常用函数的导数:思考由上面的求导公式(3)(7) ,你能发现什么规律?(8) (为常数) ;(9) (且) ;(10) (且) ;(11) ;(12) ;(13) ;(14) 2基本初等函数的导数:三、数学运用例 1 利用求导公式求下列函数导数(1) ; (2) ; (3); (4) ;(5);(6) ;(7) 例 2 若直线为函数图象的切线,求及切点坐标点评求切线问题的基本步骤:找切点求导数得斜率变式 1 求曲线在点处的切线方程变式 2 求曲线过点的切线方程点评求曲线“在某点”与“过某点”的切线是不一样的变式 3 已知直线,点为上任意一点,求在什么位置时到直线的距离最短四、练习1见课本 p82 练习第 3 题: ;第 5 题:(1) ;(2) ;(3) ;(4) 2见课本 p84 习题第 4 题(1):;3见课本 p85 第 12 题(2) ; 五、回顾小结(1)求函数导数的方法(2)掌握几个常见函数的导数和基本初等函数的导数公式六、课外作业1课本 p84 习题第 2 题2补充(1)在曲线上求一点,使得曲线在该点处的切线的倾斜角为(2)当常数为何值时,直线才能与函数相切?并求出切点3.2.1常见函数的导数XX 市第二高级中学 朱卫红教学目标:1能根据导数的定义推导部分基本初等函数的导数公式;2能利用导数公式求简单函数的导数教学重点:基本初等函数的导数公式的应用教学过程:一、问题情境1问题情境(1)在上一节中,我们用割线逼近切线的方法引入了导数的概念,那么如何求函数的导数呢?(2)求曲线在某点处的切线方程的基本步骤:求出 p 点的坐标;利用切线斜率的定义求出切线的斜率;利用点斜式求切线方程(3)函数导函数的概念2探究活动用导数的定义求下列各函数的导数:(1) (为常数) ; (2) (为常数) ;(3) ; (4) ;(5) ; (6) ;(7) 思考由上面的结果,你能发现什么规律?(1) ;(2) (为常数) ;(3) ;(4) ;(5) ;(6) ;(7) 二、建构数学1几个常用函数的导数:思考由上面的求导公式(3)(7) ,你能发现什么规律?(8) (为常数) ;(9) (且) ;(10) (且) ;(11) ;(12) ;(13) ;(14) 2基本初等函数的导数:三、数学运用例 1 利用求导公式求下列函数导数(1) ; (2) ; (3); (4) ;(5);(6) ;(7) 例 2 若直线为函数图象的切线,求及切点坐标点评求切线问题的基本步骤:找切点求导数得斜率变式 1 求曲线在点处的切线方程变式 2 求曲线过点的切线方程点评求曲线“在某点”与“过某点”的切线是不一样的变式 3 已知直线,点为上任意一点,求在什么位置时到直线的距离最短四、练习1见课本 p82 练习第 3 题: ;第 5 题:(1) ;(2) ;(3) ;(4) 2见课本 p84 习题第 4 题(1):;3见课本 p85 第 12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 染整行业绿色制造与环保法规执行考核试卷
- 玻璃纤维增强塑料在建筑外墙材料的应用考核试卷
- 人事行政培训人力资源战略考核试卷
- 木质装饰材料选购技巧考核试卷
- 皮革制品保养市场前景分析考核试卷
- 医院建筑安全与设施维护知识考核试卷
- 柑橘种植园生态环境保护考核试卷
- 生态保护与生态智慧城市建设考核试卷
- 财务报销票据粘贴规范
- 《上下前后左右》位置课件
- 学习课件铸牢中华民族共同体意识PPT
- 湖南省对口招生考试医卫专业十年真题(2010-2019年)
- 用Excel求解运筹学中最大流问题详细操作示例
- 民航客舱服务艺术案例分析全套PPT完整教学课件
- 全国大学生市场调查与分析大赛优秀报告一等奖
- CET46大学英语四六级单词EXCEL版
- 2022年南通市特殊教育岗位教师招聘考试笔试试题及答案解析
- GB/T 4857.7-2005包装运输包装件基本试验第7部分:正弦定频振动试验方法
- GB/T 3051-2000无机化工产品中氯化物含量测定的通用方法汞量法
- GB/T 13936-1992硫化橡胶与金属粘接拉伸剪切强度测定方法
- GB/T 13888-2009在开磁路中测量磁性材料矫顽力的方法
评论
0/150
提交评论