高中数学概率与随机变量讲义及例题_第1页
高中数学概率与随机变量讲义及例题_第2页
高中数学概率与随机变量讲义及例题_第3页
高中数学概率与随机变量讲义及例题_第4页
高中数学概率与随机变量讲义及例题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、概率与随机变量1.概率随机事件的概率1、必然事件:一般地,把在条件S下,一定会发生的事件叫做相对于条件S的必然事件。2、不可能事件:把在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件。3、确定事件:必然事件和不可能事件统称相对于条件S的确定事件。4、随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件。5、频数:在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数。6、频率:事件A出现的比例。7、概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.概率的基本性质1、事件的关系与运算(1)包含。对于事件A

2、与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作。不可能事件记作。(2)相等。若,则称事件A与事件B相等,记作A=B。(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。P(AB)P(A)P(B);(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。P(AB)P(A)P(B)(5)事件A与事件B互斥:为不可能事件,即,即事件A与事件B在任何一次试验中并不会同时发生。(6)事件A与事件B互为对立事件:为不可能事件,为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。2、概率的几个基本

3、性质(1).(2)必然事件的概率为1.(3)不可能事件的概率为0. .(4)事件A与事件B互斥时,P(AB)=P(A)+P(B)概率的加法公式。(5)若事件B与事件A互为对立事件,则为必然事件,.古典概型1、基本事件:基本事件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本时间的和。2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。具有这两个特点的概率模型称为古典概型。3、公式:几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。2、几何概型中,事件A发生的概率计算公式

4、:以下归纳5个常见考点:考点 1 考查等可能事件概率计算。在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。如果事件A包含的结果有m个,那么。这就是等可能事件的判断方法及其概率的计n算公式。例 1从4名男生和2名女生中任3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点 2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算。不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。事件A(或B)是否发生对事件B

5、(或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为AB。用概率的乘法公式P(AB)=P(A)P(B)计算。例 2.设甲、乙、丙三台机器是否需要照顾相互之间没有影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,()求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;()计算这个小时内至少有一台需要照顾的概率。考点 3 考查对立事件概率计算。必有一个发生的两个互斥事件A、B叫做互为对立事件。用概率的减法公式P(A)=1-P(A)计算其概率。例 3(2005 福建卷文)甲、乙两人在罚球线投球命中

6、的概率分别为。()甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;()甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;考点 4 考查独立重复试验概率计算。若n次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n次独立重复试验。若在1次试验中事件A发生的概率为 P,则在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)=。例 4某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2。从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡

7、,平时不换。()在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;()在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;()当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)考点 5 考查随机变量概率分布与期望计算。解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决 实际问题的能力。例 5某地最近出台一项机动车驾照考试规定

8、;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列和的期望,并求李明在一年内领到驾照的概率。2.随机变量及其分布离散型随机变量的分布列1.随机变量及相关概念随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母、等表示.随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.2.离散型随机变

9、量的分布列离散型随机变量的分布列的概念和性质一般地,设离散型随机变量可能取的值为,取每一个值(1,2,)的概率P()=,则称下表.PP1P2为随机变量的概率分布,简称的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1),1,2,;(2)=1.常见的离散型随机变量的分布列:(1)二项分布次独立重复试验中,事件A发生的次数是一个随机变量,其所有可能的取值为0,1,2,n,并且,其中,随机变量的分布列如下:01P称这样随机变量服从二项分布,记作,其中、为参数,并记: .(2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数是一个取值为正整数的离散型随机变量

10、,“”表示在第k次独立重复试验时事件第一次发生.随机变量的概率分布为:123kPpqp(3)超几何分布:一批产品共有N件,其中有M(MN)件次品,今抽取件,则其中的次品数是一离散型随机变量,分布列为.分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定时,则k的范围可以写为k=0,1,n.超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1na+b),则次品数的分布列为.离散型随机变量的期望与方差随机变量的数学期望和方差(1)离散型随机变量的数学期望:;期望反映随机变量取值的平均水平.离散型随机变量的方差:;方差反映随机变量取值的稳定与波动,集中与离散的

11、程度.基本性质:;.(4)若B(n,p),则 ; D =npq(这里q=1-p) ; 如果随机变量服从几何分布,则,D =其中q=1-p.标准正态分布如果随机变量的概率函数为,则称服从标准正态分布. 即有,求出,而P(ab)的计算则是.注意:当标准正态分布的的X取0时,有当的X取大于0的数时,有.比如则必然小于0,如右图. 正态分布与标准正态分布间的关系:若则的分布函数通常用表示,且有. 近五年高考真题(2009年)18.(本题满分12分)在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:(I) 取出的3件产品中一等品件数X的分布列和数学期望;(9/10)w.

12、w.w.k.s.5.u.c.o.m (II) 取出的3件产品中一等品件数多于二等品件数的概率。(31/120)(2010年)18(本题满分12分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。()假设这名射手射击5次,求恰有2次击中目标的概率(40/243)()假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;(8/81)()假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。(2011年)16(本小题满分13分)学

13、校游园活动有这样一个游戏项目:甲箱子里装有个白球,个黑球,乙箱子里装有个白球,个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出个球,若摸出的白球不少于个则获奖(每次游戏结束后将球放回原箱)()求在次游戏中,() 摸出个白球的概率;(1/5)() 获奖的概率;(7/10)()求在次游戏中,获奖次数的分布列及数学期望(7/5)(2012年)16(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.()求这4个人中恰有2人去参加甲游戏的概率;(8/27)()求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(1/9)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论