




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、MIT OpenCourseWare 18.01 Single Variable CalculusFall 2006For information about citing these materials or our Terms of Use, visit: /terms.Lecture 1818.01 Fall2006Lecture 18: Denite IntegralsIntegrals are used to calculate cumulative totals, averages, areas.Area unde
2、r a curve: (See Figure 1.)1. Divide region into rectangles2. Add up area of rectangles3. Take limit as rectangles become thinabab(i)(ii)Figure 1: (i) Area under a curve; (ii) sum of areas under rectanglesExample 1. f(x) = x2, a = 0, b arbitrary1. Divide into n intervalsLength b/n = base of rectangle
3、2. Heights: 2bb n1st: x =,height =n 22b2b n2nd:x =,height =nSum of areas ofrectangles: 2 2 2 2b3bbb2bb3b nbnb=(12 + 22 + 32 + + n2)+ +n3nnnnnnn1Lecture 1818.01 Fall2006a=0bFigure 2: Area under f (x) = x2 above 0, b.We will now estimate the sum using some 3-dimensional geometry.Consider the staircase
4、 pyramid as pictured in Figure 3.n = 4nFigure 3: Staircase pyramid: left(top view) and right (side view)1st level: n n bottom, represents volume n2.2nd level: (n 1) (n 1), represents volumne (n 1)2), etc.Hence, the total volume of the staircase pyramid is n2 + (n 1)2 + + 1.Next, the volume of the py
5、ramid is greater than the volume of the inner prism:12+ 2 2+ + n2 1 (base)(height) = 1 n2 n = 1 n33and less than the volume of the outer prism:3312+ 22+ + n2 1 (n + 1)2( n + 1) = 1 (n + 1)3332Lecture 1818.01 Fall2006In all,1n312 + 22 + + n21 (n + 1)3133=333nn3nTherefore,b12222lim (1 + 2 + 3n n3+ n)
6、=b3,3and the area under x2 from 0 to b is b3 .3Example 2. f(x) = x; area under x above 0, b. Reasoning similar to Example 1, but easier, gives a sum of areas:bn2This is the area of the triangle in Figure 4.(1 + 2 + 3 + )12b(as n ) n 2bbFigure 4: Area under f (x) = x above 0,b.Pattern: 3 db= b2db3 2
7、db= bdb2The area A(b) under f (x) should satisfy A(b) = f (b).3Lecture 1818.01 Fall2006General Picturey=f(x)ciabFigure 5: One rectangle from a Riemann Sumb a Divide into n equal pieces of length = x =nPick any ci in the interval; use f (ci) as the height of the rectangle Sum of areas:f (c1)x + f (c2
8、)x + + f (cn)xnIn summation notation:f (ci )x called a Riemann sum.i=1Denition: bf (ci)x =f(x)dx called a denite integralanlimni=1This denite integral represents the area under the curve y = f(x) above a, b.Example 3. (Integrals applied to quantity besides area.) Student borrows from parents.P = pri
9、ncipal in dollars, t = time in years, r = interest rate (e.g., 6 % is r = 0.06/year). After time t, you owe P (1 + rt) = P + PrtThe integral can be used to represent the total amount borrowed as follows. Consider a function f (t), the “borrowing function” in dollars per year. For instance, if you bo
10、rrow $ 1000 /month, then f (t) = 12, 000/year. Allow f to vary overtime.Say t = 1/12 year = 1 month.ti = i/12 i = 1, , 12.4Lecture 1818.01 Fall2006f(ti) is the borrowing rate during the ith month so the amount borrowed is f(ti)t. The total is12f (ti)t.i=1In the limit as t 0, we have 10f (t)dtwhich represents the total borrowed in one year in dollars per year.The integral can also be used to represent the total amount owed. The amount owed de
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国启动机油泵试验台市场现状分析及前景预测报告
- 2025至2030年中国吊杆升降控制系统数据监测研究报告
- 中国伴生矿行业市场深度研究及投资战略咨询报告
- 水库周边污染综合治理项目可行性实施报告
- 2025至2030年中国双沟弹珠挂锁市场调查研究报告
- 2025至2030年中国双层百页风口行业投资前景及策略咨询报告
- 2025-2030年中国大提花色织布项目投资可行性研究分析报告
- 2018-2024年中国章鱼寿司行业市场评估分析及投资发展盈利预测报告
- 2025年中国pvc软座马桶盖行业市场发展前景及发展趋势与投资战略研究报告
- 职业健康安全管理体系运行情况报告范文
- 关于太空垃圾
- 三甲医院面试自我介绍课件
- 流体压强与流速的关系市公开课一等奖说课公开课获奖课件百校联赛一等奖课件
- 《十万个为什么》整本书阅读-课件-四年级下册语文(统编版)
- 高低压电气及成套设备装配工(技师)技能鉴定理论考试题库及答案
- 亚临界循环流化床锅炉深度调峰运行技术导则
- 《中国诗词大会》九宫格(原题)
- 2024-2030年中国赛隆行业市场发展趋势与前景展望战略分析报告
- 助理医师结业考试真题与答案
- 2024年山西省历史高考试题及答案解析
- 程啸:法学研究中的文献综述
评论
0/150
提交评论