




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 2011 ANSYS, Inc.October 8, 2012电机控制系统集成和多物理域耦合设计雷华 ANSYS中国内容提要电机控制系统集成化设计电机电磁、流体耦合设计电机电磁、结构、噪声耦合分析2 2011 ANSYS, Inc.October 8, 2012电机控制系统集成化设计:自上而下的设计和自下而上的验证流程 System level Electromagnetic field Circuit and controlMultiphysics Electromagnetic field Heat and thermofluid Electromagnetic field Stres
2、s and vibration3 2011 ANSYS, Inc.October 8, 2012Integrated framework电机控制系统集成化设计流程 Analytical Motor DesignGeometryWinding MaterialsAuto Setup For FEAHi FidelityModelFE Motor AnalysisEfficiencyInductance, Torque OptimizationROMCosimulationHFSSSI Wave ICEPAKStructural Multibody Dynamics Q3DPower Electr
3、onics (Drive Analysis)ROMFFT Torque Switching / Control topologyROM: Reduced Order Models4 2011 ANSYS, Inc.October 8, 2012应用案例:IPM电机控制系统设计Transient direct coupling with FEA:Electromagnetic field CircuitModelbased coupling: Electromagnetic field or Analytical method Circuit5 2011 ANSYS, Inc.October 8
4、, 2012应用案例:永磁同步电机矢量控制系统,无缝集成用 户自定义C/C+、VHDLAMS代码 VHDL-AMS PWM inverter Model UHS Motor Model VHDL-AMS (Digital) FPGAModel6 2011 ANSYS, Inc.October 8, 2012N0004N0022source11N0012Signal Generator N0053source12N0045+N0051VM3 Vout11VM5out12out21Resolver_FEA_Linkout22Phase ShiftMagnitude MatchVM6+R10V VM
5、2C1+OPV53+OPV52-OPV51-R7-R4N0053R9T6 T3T6+V VM22DGraphSel12DGraphSel3R8R3R61.80910.00mR1.V V910.001.00500.00mVM5.V V500.00NS1STATE1R5TRANS3STATE30E2.V V0-1.00-500.00m-500.00-1.80-920.00m-910.00SET: Vo_square:=19.00m9.50m 10.00m05.00m 10.00mTRANS42DGraphSel32DGraphSel3 3.30VM3.V V91.77VM1.V Ve:=-1 TR
6、C VM4.V = 0TRC VM4.V = 005.00m 10.00mSTATE2STATE4N0086T3T3T3T3T3T6T6T6T6T6SET: Vin_ref:=-1TRC VM1.V Position_out_finalTRANS7STATE70-2.00SET: t1:=tTRC (GZ1.VAL 0) AND (Pulse_pos =0)NEW_MAX-3.50STATE59.00m9.50m 10.00mTRANS5SET: Position_out_final:=Position_outWAITTRANS8STATE82DGraphSel3SET: t2:=t SET:
7、 t3:=t2-t1910.00m500.00mTrueR1 R2TRC (GZ1.VAL 1) AND (Pulse_pos = 1)SET: Position_out :=10000*t3*1800-500.00mClassical RDC (Resolver-to-Digital Convertor)-920.00m05.00m 10.00m7 2011 ANSYS, Inc.October 8, 2012旋变系统高精度设计:多域三者瞬态协同仿真结果(详见IEEE VPPC2008论文) 8 2011 ANSYS, Inc.October 8, 2012功能扩展:电机控制系统设计及传导干
8、扰分析,降 价模型集成和多域瞬态协同仿真技术 EMI Motor Drive PredictionQ3D Frequency SweepROM CouplingFAAABus Bar D signQ3D Frequency SweepPM Control Drive DesignSimulink CouplingPM Motor DesignMaxwell CouplingIGBT Package DesignQ3D Frequency Sweep9 2011 ANSYS, Inc.October 8, 2012T+ANSYS平台:电机及控制系统多物理域、多层 次集成化设计 10 2011 A
9、NSYS, Inc.October 8, 2012Simulink内容提要电机控制系统集成化设计电机电磁、流体耦合设计电机电磁、结构、噪声耦合分析11 2011 ANSYS, Inc.October 8, 2012电机多物理域耦合设计流程Analytical Motor Design GeometryWindingMaterialsAutoSetupFor FEAVibrationAnalysis Modal HarmonicElectromagneticLossesFE Motor AnalysisEfficiencyInductance, Torque OptimizationCFD An
10、alysisForce FFTTemp DistributionExternal CoolingTemp.EM LossesElectromagneticForcesTemp.FeedbackConvectiveCoefficientsThermal FE Analysis Temp DistributionStructuralAnalysis Stress Deformation12 2011 ANSYS, Inc.TemperatureOctober 8, 2012流程展示:电机多物理域耦合设计From electromagnetic fields to heat, cooling, an
11、d stressStressThermofluidElectromagnetic field13 2011 ANSYS, Inc.October 8, 2012Heat transfer内容提要电机控制系统集成化设计电机电磁、流体耦合设计电机电磁、结构、噪声耦合分析14 2011 ANSYS, Inc.October 8, 201215 2011 ANSYS, Inc.October 8, 2012ANSYS Electromagnetic DesignMachine TypesDifferent machines may have different considerationsdepend
12、ing on their architecture or control strategies.Primary Forces are inplane (radial and tangential)Single and Three Phase Induction Machines.PM Synchronous Machines (Surface Mount, IPM).Switched reluctance machinesPrimary force are AxialAxial Flux Machines16 2011 ANSYS, Inc.October 8, 2012Electromagn
13、etic Design and AnalysisANSYS Machine Design MethodologyRMxprt: calculate rated performance for machineMaxwell: Calculate detailed magnetic FEA of machine in time domainSimplorer: Calculate detailed drive design with coupled cosimulation with either RMxprt or Simplorer.17 2011 ANSYS, Inc.October 8,
14、2012V+VM1SINE1SINE2SINE3TRIANG1IGBT1D7IGBT3D9IGBT5D11E1RphaseAPhaseA_inPhaseA_outRphaseBPhaseB_inPhaseB_outRphaseCPhaseC_inPhaseC_outMotionSetup1_inMotionSetup1_outE2D8D10IGBT6D12IGBT2IGBT40w +V_ROTB1utMachine Model in Maxwell Simplorer2D IPM (Interior Permanent Magnet) motor model created from RMxp
15、rt andMaxwell UDP (User Defined Primitive) for rotorModel V ModelDModel1SModel1D40D42D444 pole, 1500 RPM, 220 Volt DC bus.Two Control Strategies used:S_46D35S_48D37S_50D39+110VLabelID=V32-LabelID=VIA0.000512893H*Kle 2.00694ohmLPhaseALARA6 step inverter In MaxwellPWM current regulated Cosimulation Ma
16、xwell with SimplorerLabelID=VIB0.000512893H*Kle 2.00694ohm0LPhaseBLBRB+LabelID=VIC0.000512893H*Kle 2.00694ohm LCRC110VLabelID=V33LPhaseC-D41D43D45LabelID=IVc1 LabelID=IVc2 LabelID=IVc3 LabelID=IVc4 LabelID=IVc5LabelID=IVc6 100ohm100ohm100ohm100ohm100ohm100ohmS_47S_49S_51D34D36D38R20R21R22R23R24R25+-
17、1 + -1 + 1V-1 + 1V-1 + 1VLabelID=V17-1+-11V1V1VLabelID=V14 LabelID=V15LabelID=V16LabelID=V18 LabelID=V190SINE1SINE2SINE3TRIANG1IGBT5D11IGBT1D7IGBT3D9E1RphaseAPhaseA_inPhaseA_outRphaseBPhaseB_in PhaseB_outRphaseCSine TriangleBasic_Inverter1ANSOFT1.10PhaseC_inPhaseC_outCurve Info SINE1.VALSINE2.VALTR0
18、.88TRMotionSetup1_inSINE3.VAL TRIANG1.VALTRMotionSetup1_oE2TRD8D10IGBT6D12IGBT2IGBT4w0.25+V_ROTB1-0.3818 2011 ANSYS, Inc.October 8, 2012-1.00-1.1020.0022.5025.0027.5030.00Time ms32.5035.0037.5040.00VVVVVVV+VM1Y10Machine Model in Maxwell Simplorer19 2011 ANSYS, Inc.October 8, 2012FEA1.TORQUEY1 ASAS I
19、P, Inc.CurrentsBasic_Inverter1 ANSOFT20.00Curve InfoRphaseA.ITRRphaseB.ITR15.00RphaseC.ITR10.005.000.00-5.00-10.00-15.00-20.0020.0022.5025.0027.5030.0032.5035.0037.5040.00Tim e msSAS IP, Inc.TorqueBasic_Inverter1 ANSOFT15.00Curve Info FEA1.TORQUE TR12.5010.007.505.002.500.0020.0022.5025.0027.5030.00
20、32.5035.0037.5040.00Time msForce Calculations Force calculation using air gap flux density Maxwell Stress TensorForce calculation at a point on the stator.Force on a line in the airgapForce on a line colinear with the stator toothEdge Force DensityDefault field quantity available in MaxwellCan be us
21、ed for creating lumped force calculations on tooth tips Automatic Force mapping from Maxwell toANSYS Mechanical. (2D2D, 2D3D, 3D3D)20 2011 ANSYS, Inc.October 8, 2012-150.00Curve InfoExprCache(ToothTipRadi ExprCache(ToothTipRadi-200.00ExprCache(ToothTipRadi ExprCache(ToothTipRadiExprCache(ToothTipRad
22、i ExprCache(ToothTipRadi-250.000.005.00Edge Force Density in Maxwell21 2011 ANSYS, Inc.October 8, 2012Force (Newtons)Force (Newtons)Radial Force on Tooth Tips02_DC-6step_IPM ANSOFT50.00-0.00-50.00-100.00al_Full1) al_2) al_3) al_4) al_5) al_6)10.0015.0020.0025.0030.0035.0040.00Tim e msTangential Forc
23、e on Tooth Tips02_DC-6step_IPM ANSOFT10.005.000.00-5.00-10.00-15.00Curve Info ExprCache(ToothTipTangent_Full1)-20.00ExprCache(ToothTipTangent_2) ExprCache(ToothTipTangent_3)ExprCache(ToothTipTangent_4)-25.00ExprCache(ToothTipTangent_5)ExprCache(ToothTipTangent_6)-30.000.005.0010.0015.0020.0025.0030.
24、0035.0040.00Time msEccentricity ModelLeft SideToothRight SideTooth22 2011 ANSYS, Inc.October 8, 2012Parametric Study of EccentricityElectromagetic ForceRotor missaligned0%, 25%, 50%Solvedsimultaneously onmulticore computerShown: Radial Forceon Right Tooth TipFFT of Radial Force23 2011 ANSYS, Inc.Oct
25、ober 8, 2012Edge Force Density, 50% Eccentricity24 2011 ANSYS, Inc.October 8, 201250% Eccentricity: Radial and TangentialForce on Right Side and Left Side Tooth25 2011 ANSYS, Inc.October 8, 2012Force (N)Force (N)Tangential Tooth Tip ForcesANSOFT15.0010.005.000.00-5.00-10.00-15.00-20.00-25.00Curve In
26、foTangential Force Small GapTangential Force Large Gap-30.0020.0022.5025.0027.50Ti30.00 s32.5035.0037.5040.00me mRadial ToothTip ForcesANSOFT 0.00-50.00-100.00-150.00-200.00-250.00Curve InfoRadial Force Small Gap Radial Force Large Gap-300.0020.0022.5025.0027.50Ti30.00 s32.5035.0037.5040.00me m26 20
27、11 ANSYS, Inc.October 8, 2012ANSYS Force MappingTwo ApproachesDirect Force Mapping Electromagnetic forces from Maxwell toMechanical by linking systems in Workbench Transient Analysis for Stress predictionLumped Force MappingTooth Tip objects created for mappingcalculated lumped force usingEdgeForceD
28、ensity in Maxwell. Apply these lumped forces manually or through APDL MacroFurther harmonic and Noise Analysis27 2011 ANSYS, Inc.October 8, 2012Approach 1 Direct Force MappingScenario: Study the effect of Rotor EccentricityCase 1:0% EccentricityNo misalignmentCase 2:50 % EccentricityPeak Edge Force
29、Density 1.5e6 N/m2Eccentricity amount is setto50% of gap widthCreates unbalanced electromagnetic forcesPeak Edge Force Density 1.9e6 N/m228 2011 ANSYS, Inc.October 8, 2012Directional Deformation Radial当前无法显Max Deformation vs time当前无法显29 2011 ANSYS, Inc.October 8, 2012 Case 2 50 % Eccentricity Case 1
30、 0% EccentricityVon Misses StressMax Stresses vs timeCase 1 0% Eccentricity当前无法显当前无法显Case 2 50 % Eccentricity30 2011 ANSYS, Inc.October 8, 2012当前无法显示此图像。 Results: ComparisonHigher the amount of eccentricity, higher is the variation ofelectromagnetic forces, causingvibration and noisedeformation of s
31、tator, Total Deformation Deformation higher for eccentric modelStresses at time=12 ms Peak Stresses Stator Stresses are non symmetric and higher for eccentric model where the airgap is minimum31 2011 ANSYS, Inc.October 8, 2012Approach 2 Lumped Force MappingElectromagnetic ForcesExport forces Lumped
32、Forces in Time DomainANSYSMaxwellPerform FFT in MaxwellrkbenchReal/Imaginary ForcesIn Frequency Domainw Chart forse PredictionAPDL in WorkbenchANSYSMechanicalHarmonic ResponseAPDL in WorkbenchANSYSANSYS Harmonic AnalysisModal Analysis: Get Resonant Frequenciesode #1, 8502 HzMode #2, 8708 HzMode #3,
33、8708 HzFirst four Natural Frequency andcorresponding mode shapesWhy Harmonic AnalysisTo make sure that a given design can withstand sinusoidal loadsat different frequenciesTo detect resonant response and avoid it if necessary (by using dampers, for example)To determine Acoustic responseBoundary Cond
34、itionsInput ForcesAppling harmonic forces fromHarmonic Response Bode plotFrequency response at a selected node location of the model.Helps determine thatMax Amplitude (1.7mm)Harmonic Response Contour plotitude distribution of the displacements at a specific frequency,Deformation plot at 8710 HzANSYS AcousticsAcoustics Capabilities in ANSYSstics is the study of the generation, propagation, absorption,eflect
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论