




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三垂线定理,复习提问:,1。直线与平面垂直的定义。 2。直线与平面垂直的判定定理。,3。证明线面垂直的方法。,4。证明线线垂直的方法。,一、射影的概念,定义:自一点P向平面引垂线,垂足P1 叫做P在平面内的正射影(简称射影)。,如果图形F上的所有点在一平面内的射影构成图形F1,则F1叫做图形F在这个平面内的射影。,思考: 1。两条异面直线在同一平面内的射影的位置关系如何?,2。一个三角形在另一平面中的射影可能是什么图形?,二、平面的斜线、垂线、射影,PO是平面的斜线, O为斜足;,PA是平面的垂线, A为垂足;,AO是PO在平面内的射影.,三垂线定理,性质定理,判定定理,性质定理,结论:aPO
2、,二、三垂线定理: 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。,为什么呢?,三垂线定理,1、三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。,2、a与PO可以相交,也可以异面。,3、三垂线定理的实质是平面的一条斜线和 平面内的一条直线垂直的判定定理。,对三垂线定理的说明:,三垂线定理,用法:PA, a ,AO是斜线PO在平面内的射影,aAO aPO,思考: 如果把定理中的条aAO与结论aPO互换,命题是否成立?,用法: PA, a ,AO是斜线PO在平面内的射影, aPO aAO,说明:三垂线定理及其逆定理是证明线线垂 直的重要方法
3、。,例题分析:,1、判定下列命题是否正确,(1)若a是平面的斜线、直线b垂直于a在平面 内的射影,则ab。 ( ),2定理的关键找“平面”这个参照学。,强调:1四线是相对同一个平面而言,(2)若a是平面的斜线,b是平面内的直线, 且b垂直于a在内的射影,则ab。 ( ),三垂线定理,2、如图,已知正方体ABCD-A1B1C1D1中,连结BD1, AC,CB1,B1A,求证:BD1平面AB1C,ABCD是正方形,ACBD 又DD1平面ABCD BD是斜线D1B在平面ABCD上的 射影 AC在平面AC内,BD1AC,而AB1, AC相交于点A且都在平面 AB1C内 BD1平面AB1C,证明:连结B
4、D,,请同学思考:如何证明D1BAB1,连结A1B,三垂线定理,关于三垂线定的应用,关键是找出平面(基准面)的垂线。 至于射影则是由垂足、斜足来确定的,因而是第二位的。,从三垂线定理的证明得到证明ab的一个程序:一垂、 二射、三证。即,第一、找平面(基准面)及平面垂线,第二、找射影线,这时a、b便成平面上的一条直线与 一条斜线。,三垂线定理,第三、证明射影线与直线a垂直,从而得出a与b垂直。,例3.如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。,已知:BAC在平面内,点在外,PEAB,PFAC,PO ,垂足分别是E、F、O,PE=PF 求证:BAO=C
5、AO,证明:连接PA,OE,OF PEAB,PFAC,PO , ABOE,ACOF(三垂线定理的逆定理), PE=PF,PA=PA,Rt PAERt PAF。,AE=AF又AO=AO,Rt AOERt AOF。, BAO=CAO,例4、道旁有一条河,彼岸有电塔AB,高15m,只有测角 器和皮尺作测量工具,能否求出电塔顶与道路的距离?,解:在道边取一点C,,使BC与道边所成水平角等于90,,再在道边取一点D,,使水平角CDB等于45,,测得C、D的距离等于20cm,三垂线定理,BC是AC的射影 且CDBC CDAC,CDB=45,CDBC,CD=20cm BC=20m,,因此斜线AC的长度就是电塔顶与道路的距离。,三垂线定理,三垂线定理:在平面内的一条直线,如果 和这个平面的一条斜线的射影垂直,那么它也 和这条斜线垂直。,小 结,3操作程序分三个步骤“一垂二射三证”,1定理中四条线均针对同一平面而言,2应用定理关键是找“基准面”这个参照系,三垂线定理,例4、设PA、PB、PC两两互相垂直,且PA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年珠宝鉴定师考试前沿试题及答案
- 2024年税务师重点突破试题及答案
- 2025专用合同管理顾问委托合同样本
- 一年级语文时间管理题及答案
- 食品化学成分识别试题及答案
- 2025《技术服务合同》
- 企业可持续发展路径探索
- 2025成都市家庭居室装饰装修施工合同(样本)
- 红河学院《工程光学基础》2023-2024学年第一学期期末试卷
- 信阳师范大学《软件测试技术》2023-2024学年第二学期期末试卷
- 2024年4月贵州省高三年级适应性考试地理试卷
- (高清版)DZT 0073-2016 电阻率剖面法技术规程
- 2024年福建省2024届高三3月省质检(高中毕业班适应性练习卷)英语试卷(含答案)
- 新申请艾滋病筛查实验室验收指南
- 仓储设备操作安全操作培训
- 上海电机学院计算机C语言专升本题库及答案
- 2023年宁波房地产市场年度报告
- 员工身心健康情况排查表
- 模拟小法庭剧本-校园欺凌
- 危险化学品经营企业安全评价细则
- 哈利波特与死亡圣器下双语电影台词
评论
0/150
提交评论