版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数量关系 ,第八章,第一部分 向量代数,第二部分 空间解析几何,在三维空间中:,空间形式 点, 线, 面,基本方法 坐标法; 向量法,坐标,方程(组),空间解析几何与向量代数,1,四、利用坐标作向量的线性运算,第一节,一、向量的概念,二、向量的线性运算,三、空间直角坐标系,五、向量的模、方向角、投影,向量及其线性运算,第八章,2,向量:,既有大小又有方向的量.,向量表示:,模长为1的向量.,零向量:,模长为0的向量.,向量的模:,向量的大小.,单位向量:,一、向量的概念,或,或,或,3,自由向量:,不考虑起点位置的向量.,相等向量:,大小相等且方向相同的向量.,负向量:,大小相等但方向相反的向
2、量.,向径:,4,规定: 零向量与任何向量平行 ;,平行向量:,向量共线:,当两个平行向量的起点放在同一,点时,它们的终点和公共起点应在一条直,线上 .因此,两向量平行又称两向量共线.,5,二、向量的线性运算,1. 向量的加法,三角形法则:,平行四边形法则:,运算规律 :,交换律,结合律,三角形法则可推广到多个向量相加 .,6,7,2. 向量的减法,三角不等式,一般地,任给向量 及点,8,3、向量与数的乘法,数与向量的乘积符合下列运算规律:,(1)结合律:,(2)分配律:,9,例1. 设 M 为,解:,10,按照向量与数的乘积的规定,,上式表明:一个非零向量除以它的模的结果是一个与原向量同方向
3、的单位向量.,两个向量的平行关系,11,证,充分性显然;,必要性,两式相减,得,12,三、空间直角坐标系,由三条互相垂直的数轴按右手规则,组成一个空间直角坐标系.,坐标原点,坐标轴,x轴(横轴),y轴(纵轴),z 轴(竖轴),过空间一定点 o ,坐标面,卦限(八个),zox面,1. 空间直角坐标系的基本概念,13,2. 向量的坐标表示,在空间直角坐标系下,沿三个坐标轴方向的分向量.,14,向径,在直角坐标系下,坐标轴上的点 P, Q , R ;,坐标面上的点 A , B , C,点 M,特殊点的坐标 :,有序数组,(称为点 M 的坐标),原点 O(0,0,0) ;,15,坐标轴 :,坐标面 :
4、,16,四、利用坐标作向量的线性运算,设,则,平行向量对应坐标成比例:,17,例2.已知两点,在AB直线上求一点 M , 使,解: 设 M 的坐标为,如图所示,及实数,得,即,18,说明: 由,得定比分点公式:,点 M 为 AB 的中点 ,于是得,中点公式:,19,五、向量的模、方向角、投影,1. 向量的模与两点间的距离公式,则有,由勾股定理得,因,得两点间的距离公式:,对两点,与,20,例3.在 z 轴上求与两点,等距,解: 设该点为,解得,故所求点为,及,思考:,(1) 如何求在 xoy 面上与A , B 等距离之点的轨迹方程?,(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?,
5、离的点 .,21,提示:,(1) 设动点为,利用,得,(2) 设动点为,利用,得,且,例4. 已知两点,和,解:,求,22,解,所求向量有两个,一个与 同向,一个反向,或,23,2. 方向角与方向余弦,设有两非零向量,任取空间一点 O ,称 =AOB (0 ) 为向量,的夹角.,类似可定义向量与轴, 轴与轴的夹角 .,与三坐标轴,方向角的余弦称为其方向余弦.,特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与 之间任意取值.,的夹角 , , 为其方向角.,24,方向余弦的性质:,25,例6. 已知两点,和,的模 、方向余弦和方向角 .,解:,计算向量,26,例7. 设点 A 位于第一卦
6、限,解: 已知,角依次为,求点 A 的坐标 .,则,因点 A 在第一卦限 ,故,于是,故点 A 的坐标为,向径 OA 与 x 轴 y 轴的夹,27,解,28,29,3. 向量在轴上的投影,空间一点在 轴上的投影,30,空间向量在 轴上的投影,称为向量在 轴,上的分向量.,设,数 称为向量在 轴上的投影,记作,或,31,设,则,或记作,向量投影的性质,性质1,其中 为向量 与 轴的夹角,性质2,性质3,32,例8 一向量的终点在点 ,它在 轴、,轴、 轴上的投影依次为 .求这向量的,起点 的坐标.,解 设 的坐标为,由已知可得,所以,即,解,例9 已知 ,它与 的夹角为 ,求 .,33,解,34,向量的概念,向量的加减法,向量与数的乘法,(注意与标量的区别),(平行四边形法则),(注意数乘后的方向),四、小结,向量在坐标轴上的分向量与向量的坐标.,(注意分向量与向量的坐标的区别),向量在坐标轴上的分向量与向量的坐标.,向量在轴上的投影与投影定理.,35,思考题 1,已知平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025缝纫机机器租赁合同
- 兰州市政府2025年度合同管理创新试点合同3篇
- 2025年度酒店客房内墙乳胶漆翻新服务合同3篇
- 2025年度知识产权交易及投资合作协议3篇
- 二零二五年度竞业禁止机械租赁与节能技术合同3篇
- 二零二五年度跨国公司股东合伙人战略合作协议3篇
- 二零二五年度航空航天出资入股协议
- 2025年度生态园林景观设计-特色树苗订购与施工合同
- 二零二五年度生物医药研发项目转让合同3篇
- 二零二五年度房产转让合同中的税务筹划及优惠条款协议3篇
- 土地生态学智慧树知到期末考试答案章节答案2024年东北农业大学
- 新概念第二册课文和单词
- 吾悦广场商场开业仪式开业庆典周年庆活动方案
- JJG 393-2018便携式X、γ辐射周围剂量当量(率)仪和监测仪
- 2023年6月新高考历史浙江卷试题真题答案解析版
- 人教新起点(一起)五年级英语上册全册知识点
- 幼儿园小班教案《垫子多玩》
- 2024年等离子切割机市场需求分析报告
- 高速公路服务区业态创新策划书
- 市纪委跟班学习工作总结
- 速卖通运营工作总结
评论
0/150
提交评论