版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、切 线 的 判 定,复 习,1.直线和圆有哪些位置关系? 2.什么叫相切? 3.我们学习过哪些切线的判断方法?,想一想,过圆0内一点作直线,这条直线与圆有什么位置关系?过半径OA上一点(A除外)能作圆O的切线吗?过点A呢?,O,r,l,A,切线的判定定理 经过半径的外端并且垂直于这 条半径的直线是圆的切线。, OA是半径,OAl于A l是O的切线。,几何符号表达:,判 断,1. 过半径的外端的直线是圆的切线( ) 2. 与半径垂直的的直线是圆的切线( ) 3. 过半径的端点与半径垂直的直线是圆的切线( ),利用判定定理时,要注意直线须具备以下两个条件,缺一不可: (1)直线经过半径的外端; (
2、2)直线与这半径垂直。,判断一条直线是圆的切线,你现在会有多少种方法?,有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的直线是圆的切线。 2.利用d与r的关系作判断:当dr时直线是圆的切线。 3.利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。,想一想,例1,已知:直线AB经过O上的点C,并且OA=OB,CA=CB。 求证:直线AB是O的切线。,O,B,A,C,分析:由于AB过O上的点C,所以连接OC,只要证明 ABOC即可。,证明:连结OC(如图)。 OAOB,CACB, OC是等腰三角形OAB底边AB上的中线。 ABOC。 OC是O的半径 AB是O的切线。,例
3、2,已知:O为BAC平分线上一点,ODAB于D,以O为圆心,OD为 半径作O。 求证:O与AC相切。,O,A,B,C,D,证明:过O作OEAC于E。 AO平分BAC,ODAB OEOD OD是O的半径 AC是O的切线。,小 结,例1与例2的证法有何不同? (1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简记为:连半径,证垂直。 (2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂线段长等于半径长。简记为:作垂直,证半径。,练 习,如图,AOB中,OAOB10,AOB120,以O为圆心, 5为半径的O与OA、OB相交。 求
4、证:AB是O的切线。,O,B,A,证明:连结OP。 AB=AC,B=C。 OB=OP,B=OPB, OBP=C。 OPAC。 PEAC, PEOP。 PE为0的切线。,如图,ABC中,AB=AC,以AB为直径的O交边BC于P, PEAC于E。 求证:PE是O的切线。,练 习,O,A,B,C,E,P,课堂小结,1. 判定切线的方法有哪些?,直线l,与圆有唯一公共点,与圆心的距离等于圆的半径,经过半径外端且垂直这条半径,l是圆的切线,2. 常用的添辅助线方法?,直线与圆的公共点已知时,作出过公共点的半径,再证半径垂直于该直线。(连半径,证垂直) 直线与圆的公共点不确定时,过圆心作直线的垂线段,再证
5、明这条垂线段等于圆的半径。(作垂直,证半径),l是圆的切线,l是圆的切线,课堂练习:,1判断: (1)经过半径的一个端点,并且垂直于这条半径的直线是圆的切 (2)若一条直线与圆的半径垂直,则这条直线是圆的切线 (3)以直角边为半径的圆一定与另一条直角边相切。 (4)以等腰三角形斜边的中点为圆心,直角边的一半为半径的圆,与两条直角边相切。2下列命题中的假命题是: A和圆有唯一公共点的直线是圆的切线 B过直径一端且垂直于这直径的直线是圆的切线 C点A在直线l上,O半径为r,若OAr时,则l是O的切线 DO的直径为a,则O点直线的距离为d,若d a时,则l是O 的切线。,3如图,AB是O的直径,PB
6、是O的切线,PA交O于点C,若AB6 cm,PB8cm,则AC,PCcm。 4已知:如图,O的直径长6cm,OAOB5cm,AB8cm,求证:AB 与O相切。 5已知:如图,ABCD为直角梯形,ABBC,CDADBC,求证:以CD 为直径的圆与AB相切。 分析:要证明以CD为直径的圆与AB相切,只要证明圆心O到AB的距离等 于O直径的一半即可。,本讲着重介绍了“切线的判定定理”利用此定理判定一条直线是否为圆的切线时,必须注意直线是否符合题设的两个条件,二者缺一不可.,课堂小结:,要判定一条直线是圆的切线,我们已学过三种方法.,在证明一条直线是圆的切线时,常常要添加辅助线,一般有以下两种情况:(1)如果已知直线过圆上某一点,则可作出过这点的半径,并证明直线 与这条半径垂直。(2)若已知直线和圆的公共点没有确定,这时应过圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论