所谓偏最小二乘法_第1页
所谓偏最小二乘法_第2页
所谓偏最小二乘法_第3页
所谓偏最小二乘法_第4页
所谓偏最小二乘法_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 所谓偏最小二乘法,就是指在做基于最小二乘法的线性回归分析之前,对数据集进行主成分分析降维,下面的源码是没有删减的,GreenSim团队免费提供您使用,转载请注明GreenSim团队(/greensim)。function y5,e1,e2=PLS(X,Y,x,y,p,q)% 偏最小二乘回归的通用程序% 注释以“基于近红外光谱分析的汽油组分建模”为例,但本程序的适用范围绝不仅限于此% GreenSim团队原创作品(/greensim)% 输入参数列表% X 校正集光谱矩阵,nk的矩阵,n个样本,k个波长%

2、Y 校正集浓度矩阵,nm的矩阵,n个样本,m个组分% x 验证集光谱矩阵% y 验证集浓度矩阵% p X的主成分的个数,最佳取值需由其它方法确定% q Y的主成分的个数,最佳取值需由其它方法确定% 输出参数列表% y5 x对应的预测值(y为真实值)% e1 预测绝对误差,定义为e1=y5-y% e2 预测相对误差,定义为e2=|(y5-y)/y|% 第一步:对X,x,Y,y进行归一化处理n,k=size(X);m=size(Y,2);Xx=X;x;Yy=Y;y;xmin=zeros(1,k);xmax=zeros(1,k);for j=1:k xmin(j)=min(Xx(:,j); xmax

3、(j)=max(Xx(:,j); Xx(:,j)=(Xx(:,j)-xmin(j)/(xmax(j)-xmin(j);endymin=zeros(1,m);ymax=zeros(1,m);for j=1:m ymin(j)=min(Yy(:,j); ymax(j)=max(Yy(:,j); Yy(:,j)=(Yy(:,j)-ymin(j)/(ymax(j)-ymin(j);endX1=Xx(1:n,:);x1=Xx(n+1):end,:);Y1=Yy(1:n,:);y1=Yy(n+1):end,:); 第二步:分别提取X1和Y1的p和q个主成分,并将X1,x1,Y1,y1映射到主成分空间CX,

4、SX,LX=princomp(X1);CY,SY,LY=princomp(Y1);CX=CX(:,1:p);CY=CY(:,1:q);X2=X1*CX;Y2=Y1*CY;x2=x1*CX;y2=y1*CY; % 第三步:对X2和Y2进行线性回归B=regress(Y2,X2,0.05);%第三个输入参数是显著水平,可以调整 % 第四步:将x2带入模型得到预测值y3y3=x2*B; % 第五步:将y3进行“反主成分变换”得到y4y4=y3*pinv(CY);% 第六步:将y4反归一化得到y5for j=1:m y5(:,j)=(ymax(j)-ymin(j)*y4(:,j)+ymin(j);en

5、d% 第七步:计算误差e1=y5-y;e2=abs(y5-y)./y);function MD,ERROR,PRESS,SECV,SEC=ExtraSim1(X,Y)% 基于PLS方法的进一步仿真分析% 功能一:计算MD值,以便于发现奇异样本% 功能二:计算各种p取值情况下的ERROR,PRESS,SECV,SEC值,以确定最佳输入变量个数%n,k=size(X);m=size(Y,2);pmax=n-1;q=m;ERROR=zeros(1,pmax);PRESS=zeros(1,pmax);SECV=zeros(1,pmax);SEC=zeros(1,pmax);XX=X;YY=Y;N=si

6、ze(XX,1);for p=1:pmax disp(p); Err1=zeros(1,N);%绝对误差 Err2=zeros(1,N);%相对误差 for i=1:N disp(i); if i=1 x=XX(1,:); y=YY(1,:); X=XX(2:N,:); Y=YY(2:N,:); elseif i=N x=XX(N,:); y=YY(N,:); X=XX(1:(N-1),:); Y=YY(1:(N-1),:); else x=XX(i,:); y=YY(i,:); X=XX(1:(i-1),:);XX(i+1):N,:); Y=YY(1:(i-1),:);YY(i+1):N,:

7、); end y5,e1,e2=PLS(X,Y,x,y,p,q); Err1(i)=e1; Err2(i)=e2; end ERROR(p)=sum(Err2)/N; PRESS(p)=sum(Err1.2); SECV(p)=sqrt(PRESS(p)/n); SEC(p)=sqrt(PRESS(p)/(n-p);end%CX,SX,LX=princomp(X);S=SX(:,1:p);MD=zeros(1,n);for j=1:n s=S(j,:); MD(j)=(s)*(inv(S*S)*(s);end偏最小二乘法 matlab程序函数:function T,P,U,Q,B,W = pl

8、s (X,Y,tol2)% PLS Partial Least Squares Regrassion% T,P,U,Q,B,Q = pls(X,Y,tol) performs particial least squares regrassion% between the independent variables, X and dependent Y as% X = T*P + E;% Y = U*Q + F = T*B*Q + F1;% Inputs:% X data matrix of independent variables 自变量% Y data matrix of dependen

9、t variables因变量% tol the tolerant of convergence (defaut 1e-10) 收敛度% % Outputs: Y = X*B + E, X = T*P + E0, and Y = U*Q + F0, U = T*B + F1% T score matrix of X 得分矩阵% P loading matrix of X 载荷矩阵% U score matrix of Y% Q loading matrix of Y% B matrix of regression coefficient 矩阵回归系数% W weight matrix of X

10、权重矩阵% Using the PLS model, for new X1, Y1 can be predicted as% Y1 = (X1*P)*B*Q = X1*(P*B*Q)% or% Y1 = X1*(W*inv(P*W)*inv(T*T)*T*Y)% Without Y provided, the function will return the principal components as% X = T*P + E% Example: taken from Geladi, P. and Kowalski, B.R., An example of 2-block% predict

11、ive partial least-squares regression with simulated data,% Analytica Chemica Acta, 185(1996) 19-32.%x=4 9 6 7 7 8 3 2;6 15 10 15 17 22 9 4;8 21 14 23 27 36 15 6;10 21 14 13 11 10 3 4; 12 27 18 21 21 24 9 6; 14 33 22 29 31 38 15 8;16 33 22 19 15 12 3 6; 18 39 26 27 25 26 9 8;20 45 30 35 35 40 15 10;y

12、=1 1;3 1;5 1;1 3;3 3;5 3;1 5;3 5;5 5;% leave the last sample for testN=size(x,1);x1=x(1:N-1,:); %取x中18行的所有数据y1=y(1:N-1,:);x2=x(N,:); %取x中的第9行数据y2=y(N,:);% normalization 归一化xmean=mean(x1);xstd=std(x1);ymean=mean(y1);ystd=std(y);X=(x1-xmean(ones(N-1,1),:)./xstd(ones(N-1,1),:);Y=(y1-ymean(ones(N-1,1),:

13、)./ystd(ones(N-1,1),:);% PLS modelT,P,U,Q,B,W=pls(X,Y);% Prediction and erroryp = (x2-xmean)./xstd * (P*B*Q);fprintf(Prediction error: %g/n,norm(yp-(y2-ymean)./ystd);% By Yi Cao at Cranfield University on 2nd Febuary 2008% Reference:% Geladi, P and Kowalski, B.R., Partial Least-Squares Regression: A

14、% Tutorial, Analytica Chimica Acta, 185 (1986) 1-7.% Input checkerror(nargchk(1,3,nargin);error(nargoutchk(0,6,nargout);if nargin2 Y=X;endtol = 1e-10;if nargintol2 & k tol w = X*u; w = w/norm(w); t = t1; t1 = X*w; q = Y*t1; q = q/norm(q); u = Y*q; end % update p based on t t=t1; p=X*t/(t*t); pnorm=n

15、orm(p); p=p/pnorm; t=t*pnorm; w=w*pnorm; % regression and residuals b = u*t/(t*t); X = X - t*p; Y = Y - b*t*q; % save iteration results to outputs: k=k+1; T(:,k)=t; P(:,k)=p; U(:,k)=u; Q(:,k)=q; W(:,k)=w; B(k,k)=b; % uncomment the following line if you wish to see the convergence% disp(norm(Y)endT(:

16、,k+1:end)=;P(:,k+1:end)=;U(:,k+1:end)=;Q(:,k+1:end)=;W(:,k+1:end)=;B=B(1:k,1:k); 例子:% Principal Component Analysis and Partial Least Squares% Principal Component Analysis (PCA) and Partial Least Squares (PLS) are% widely used tools. This code is to show their relationship through the% Nonlinear Iter

17、ative PArtial Least Squares (NIPALS) algorithm.% The Eigenvalue and Power Method% The NIPALS algorithm can be derived from the Power method to solve the% eigenvalue problem. Let x be the eigenvector of a square matrix, A,% corresponding to the eignvalue s:% $Ax=sx$% Modifying both sides by A iterati

18、vely leads to% $Akx=skx$% Now, consider another vectro y, which can be represented as a linear% combination of all eigenvectors:% $y=/sum_in b_ix_i=Xb$% where% $X=/leftx_1/,/,/, /cdots/,/,/, x_n /right$% and% $b = /leftb_1/,/,/, /cdots/,/,/, b_n /rightT$% Modifying y by A gives% $Ay=AXb=XSb$% Where

19、S is a diagnal matrix consisting all eigenvalues. Therefore, for% a large enough k,% $Aky=XSkb/approx /alpha x_1$% That is the iteration will converge to the direction of x_1, which is the% eigenvector corresponding to the eigenvalue with the maximum module.% This leads to the following Power method

20、 to solve the eigenvalue problem.A=randn(10,5);% sysmetric matrix to ensure real eigenvaluesB=A*A;%find the column which has the maximum normdum,idx=max(sum(A.*A);x=A(:,idx);%storage to judge convergencex0=x-x;%convergence toleranttol=1e-6;%iteration if not convergedwhile norm(x-x0)tol %iteration to

21、 approach the eigenvector direction y=A*x; %normalize the vector y=y/norm(y); %save previous x x0=x; %x is a product of eigenvalue and eigenvector x=A*y;end% the largest eigen value corresponding eigenvector is ys=x*x;% compare it with those obtained with eigV,D=eig(B);d,idx=max(diag(D);v=V(:,idx);d

22、isp(d-s)% v and y may be different in signsdisp(min(norm(v-y),norm(v+y)% The NIPALS Algorithm for PCA% The PCA is a dimension reduction technique, which is based on the% following decomposition:% $X=TPT+E$% Where X is the data matrix (m x n) to be analysed, T is the so called% score matrix (m x a),

23、P the loading matrix (n x a) and E the residual.% For a given tolerance of residual, the number of principal components, a,% can be much smaller than the orginal variable dimension, n. % The above power algorithm can be extended to get T and P by iteratively% subtracting A (in this case, X) by x*y (

24、in this case, t*p) until the% given tolerance satisfied. This is the so called NIPALS algorithm.% The data matrix with normalizationA=randn(10,5);meanx=mean(A);stdx=std(A);X=(A-meanx(ones(10,1),:)./stdx(ones(10,1),:);B=X*X;% allocate T and PT=zeros(10,5);P=zeros(5);% tol for convergencetol=1e-6;% to

25、l for PC of 95 percenttol2=(1-0.95)*5*(10-1);for k=1:5 %find the column which has the maximum norm dum,idx=max(sum(X.*X); t=A(:,idx); %storage to judge convergence t0=t-t; %iteration if not converged while norm(t-t0)tol %iteration to approach the eigenvector direction p=X*t; %normalize the vector p=

26、p/norm(p); %save previous t t0=t; %t is a product of eigenvalue and eigenvector t=X*p; end %subtracing PC identified X=X-t*p; T(:,k)=t; P(:,k)=p; if norm(X)tol2 break endendT(:,k+1:5)=;P(:,k+1:5)=;S=diag(T*T);% compare it with those obtained with eigV,D=eig(B);D,idx=sort(diag(D),descend);D=D(1:k);V=

27、V(:,idx(1:k);fprintf(The number of PC: %i/n,k);fprintf(norm of score difference between EIG and NIPALS: %g/n,norm(D-S);fprintf(norm of loading difference between EIG and NIPALS: %g/n,norm(abs(V)-abs(P);% The NIPALS Algorithm for PLS% For PLS, we will have two sets of data: the independent X and depe

28、ndent% Y. The NIPALS algorithm can be used to decomposes both X and Y so that% $X=TPT+E,/,/,/,/,Y=UQT+F,/,/,/,/,U=TB$% The regression, U=TB is solved through least sequares whilst the% decompsition may not include all components. That is why the approach is% called partial least squares. This algori

29、thm is implemented in the PLS% function.% Example: Discriminant PLS using the NIPALS Algorithm% From Chiang, Y.Q., Zhuang, Y.M and Yang, J.Y, Optimal Fisher% discriminant analysis using the rank decomposition, Pattern Recognition,% 25 (1992), 101-111.% Three classes data, each has 50 samples and 4 v

30、ariables.x1=5.1 3.5 1.4 0.2; 4.9 3.0 1.4 0.2; 4.7 3.2 1.3 0.2; 4.6 3.1 1.5 0.2;. 5.0 3.6 1.4 0.2; 5.4 3.9 1.7 0.4; 4.6 3.4 1.4 0.3; 5.0 3.4 1.5 0.2; . 4.4 2.9 1.4 0.2; 4.9 3.1 1.5 0.1; 5.4 3.7 1.5 0.2; 4.8 3.4 1.6 0.2; . 4.8 3.0 1.4 0.1; 4.3 3.0 1.1 0.1; 5.8 4.0 1.2 0.2; 5.7 4.4 1.5 0.4; . 5.4 3.9 1

31、.3 0.4; 5.1 3.5 1.4 0.3; 5.7 3.8 1.7 0.3; 5.1 3.8 1.5 0.3; . 5.4 3.4 1.7 0.2; 5.1 3.7 1.5 0.4; 4.6 3.6 1.0 0.2; 5.1 3.3 1.7 0.5; . 4.8 3.4 1.9 0.2; 5.0 3.0 1.6 0.2; 5.0 3.4 1.6 0.4; 5.2 3.5 1.5 0.2; . 5.2 3.4 1.4 0.2; 4.7 3.2 1.6 0.2; 4.8 3.1 1.6 0.2; 5.4 3.4 1.5 0.4; . 5.2 4.1 1.5 0.1; 5.5 4.2 1.4

32、0.2; 4.9 3.1 1.5 0.2; 5.0 3.2 1.2 0.2; . 5.5 3.5 1.3 0.2; 4.9 3.6 1.4 0.1; 4.4 3.0 1.3 0.2; 5.1 3.4 1.5 0.2; . 5.0 3.5 1.3 0.3; 4.5 2.3 1.3 0.3; 4.4 3.2 1.3 0.2; 5.0 3.5 1.6 0.6; . 5.1 3.8 1.9 0.4; 4.8 3.0 1.4 0.3; 5.1 3.8 1.6 0.2; 4.6 3.2 1.4 0.2; . 5.3 3.7 1.5 0.2; 5.0 3.3 1.4 0.2;x2=7.0 3.2 4.7 1

33、.4; 6.4 3.2 4.5 1.5; 6.9 3.1 4.9 1.5; 5.5 2.3 4.0 1.3; . 6.5 2.8 4.6 1.5; 5.7 2.8 4.5 1.3; 6.3 3.3 4.7 1.6; 4.9 2.4 3.3 1.0; . 6.6 2.9 4.6 1.3; 5.2 2.7 3.9 1.4; 5.0 2.0 3.5 1.0; 5.9 3.0 4.2 1.5; . 6.0 2.2 4.0 1.0; 6.1 2.9 4.7 1.4; 5.6 2.9 3.9 1.3; 6.7 3.1 4.4 1.4; . 5.6 3.0 4.5 1.5; 5.8 2.7 4.1 1.0;

34、 6.2 2.2 4.5 1.5; 5.6 2.5 3.9 1.1; . 5.9 3.2 4.8 1.8; 6.1 2.8 4.0 1.3; 6.3 2.5 4.9 1.5; 6.1 2.8 4.7 1.2; . 6.4 2.9 4.3 1.3; 6.6 3.0 4.4 1.4; 6.8 2.8 4.8 1.4; 6.7 3.0 5.0 1.7; . 6.0 2.9 4.5 1.5; 5.7 2.6 3.5 1.0; 5.5 2.4 3.8 1.1; 5.5 2.4 3.7 1.0; . 5.8 2.7 3.9 1.2; 6.0 2.7 5.1 1.6; 5.4 3.0 4.5 1.5; 6.

35、0 3.4 4.5 1.6; . 6.7 3.1 4.7 1.5; 6.3 2.3 4.4 1.3; 5.6 3.0 4.1 1.3; 5.5 2.5 5.0 1.3; . 5.5 2.6 4.4 1.2; 6.1 3.0 4.6 1.4; 5.8 2.6 4.0 1.2; 5.0 2.3 3.3 1.0; . 5.6 2.7 4.2 1.3; 5.7 3.0 4.2 1.2; 5.7 2.9 4.2 1.3; 6.2 2.9 4.3 1.3; . 5.1 2.5 3.0 1.1; 5.7 2.8 4.1 1.3;x3=6.3 3.3 6.0 2.5; 5.8 2.7 5.1 1.9; 7.1

36、 3.0 5.9 2.1; 6.3 2.9 5.6 1.8; . 6.5 3.0 5.8 2.2; 7.6 3.0 6.6 2.1; 4.9 2.5 4.5 1.7; 7.3 2.9 6.3 1.8; . 6.7 2.5 5.8 1.8; 7.2 3.6 6.1 2.5; 6.5 3.2 5.1 2.0; 6.4 2.7 5.3 1.9; . 6.8 3.0 5.5 2.1; 5.7 2.5 5.0 2.0; 5.8 2.8 5.1 2.4; 6.4 3.2 5.3 2.3; . 6.5 3.0 5.5 1.8; 7.7 3.8 6.7 2.2; 7.7 2.6 6.9 2.3; 6.0 2.

37、2 5.0 1.5; . 6.9 3.2 5.7 2.3; 5.6 2.8 4.9 2.0; 7.7 2.8 6.7 2.0; 6.3 2.7 4.9 1.8; . 6.7 3.3 5.7 2.1; 7.2 3.2 6.0 1.8; 6.2 2.8 4.8 1.8; 6.1 3.0 4.9 1.8; . 6.4 2.8 5.6 2.1; 7.2 3.0 5.8 1.6; 7.4 2.8 6.1 1.9; 7.9 3.8 6.4 2.0; . 6.4 2.8 5.6 2.2; 6.3 2.8 5.1 1.5; 6.1 2.6 5.6 1.4; 7.7 3.0 6.1 2.3; . 6.3 3.4 5.6 2.4; 6.4 3.1 5.5 1.8; 6.0 3.0 4.8 1.8; 6.9 3.1 5.4 2.1; . 6.7 3.1 5.6 2.4; 6.9 3.1 5.1 2.3; 5.8 2.7 5.1 1.9; 6.8 3.2 5.9 2.3; . 6.7 3.3 5.7 2.5; 6.7 3.0 5.2 2.3; 6.3 2.5 5.0 1.9; 6.5 3.0 5.2 2.0; . 6.2 3.4 5.4 2.3; 5.9 3.0 5.1 1.8;%Split data

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论