大物习题答案第4章 机械振动_第1页
大物习题答案第4章 机械振动_第2页
大物习题答案第4章 机械振动_第3页
大物习题答案第4章 机械振动_第4页
大物习题答案第4章 机械振动_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第4章 机械振动4.1基本要求1掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。简谐振动的运动方程 2振幅A 作简谐振动的物体的最大位置坐标的绝对值。3周期T 作简谐振动的物体完成一次全振动所需

2、的时间。4频率 单位时间内完成的振动次数,周期与频率互为倒数,即5圆频率 作简谐振动的物体在秒内完成振动的次数,它与频率的关系为6相位和初相位 简谐振动的运动方程中项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位7简谐振动的能量 作简谐振动的系统具有动能和势能。弹性势能 动能 弹簧振子系统的机械能为 8阻尼振动 振动系统因受阻尼力作用,振幅不断减小。9受迫振动 系统在周期性外力作用下的振动。周期性外力称为驱动力。10共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。4.3基本规律1一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性

3、变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。图4.1表示了弹簧振子的动能和势能随时间的变化()。为了便于将此变化与位移随时间的变化相比较,在下面画了x-t曲线,由图可以看出,动能和势能的变化频率是弹簧振子振动频率的两倍。图4.1 弹簧振子的动能和势能随时间的变化2简谐振动的合成若一个质点同时参与了两个同方向、同频率的简谐振动,即合振动仍是一个角频率为的简谐振动。合位移合振动的振幅合振动的初相振动加强:, 振动减弱:, 当取其他值时 若两个振动同方向,但不同频率,则合成振动不再是周期振动,而是振幅随

4、时间周期性变化的振动。若两振动的振动方向相互垂直,频率相同。一般情况下,合成振动轨迹为一椭圆。若两个相互垂直的振动频率不相同,且为简单比关系,则其合成振动的轨迹为封闭的曲线,曲线的具体形状取决于两个振动的频率比。若两频率比为无理数,则合成运动轨迹永不封闭。4.4学习指导1重点解析简谐振动的运动学问题是本章的重点内容之一,主要有以下两种类型:(1)已知简谐振动表达式求有关物理量(2)已知运动情况或振动曲线建立简谐振动表达式对于类型(1)主要采用比较法,就是把已知的振动表达式与简谐振动的一般表达式加以比较,结合有关公式求得各物理量。对于类型(2)的解题方法,一般是根据题给的条件,求出描述简谐振动的

5、三个特征量、,然后将这些量代入简谐振动的一般式,就得到要求的运动表达式。其中角频率由系统的性质决定,.振幅A可由初始条件求出,;或从振动曲线上直接看出。初相有两种解法,一是解析法,即从初始条件得到,这里有两个值,必须根据条件去掉一个不合理的值;另一是旋转矢量法,正确画出振幅矢量图,这是求初相最简便且直观的方法。例 如图4-2所示为某质点作简谐振动的曲线。求该质点的振动方程。图4-2分析:若要求质点的振动方程,必须求出三个特征量、。利用振动曲线可以看出,t=0时刻,质点位移,t=0.5s时,x=0。利用这些信息可以确定、。解:方法1 解析法t=0时,于是有解得:图4-3由t=0时刻对应的曲线斜率

6、可知,所以质点速度,即:所以为求,先写出质点振动方程将t=0.5s,x=0代入上式得,同样结合该点的速度方向可以得到,所以质点的振动方程是方法2:旋转矢量法由振动曲线可知,t=0时刻,质点位移,质点速度,对应的旋转矢量如图4-3所示,由图可知。t=0.5s时,x=0,。此运动状态对应矢量,即旋转矢量由t=0时的经0.5s转至,共转了,质点的振动方程是2难点释疑疑难点1 旋转矢量图4-4自Ox轴的原点O作一矢量,使它的模等于振动的振幅A,并使矢量在Oxy平面内绕点O作逆时针方向的匀角速转动,其角速度与振动的角频率相等,这个矢量就叫做旋转矢量。如图4-4所示。旋转矢量的矢端在Ox轴上的投影点的运动

7、,可表示物体在Ox轴上的简谐振动。旋转矢量与简谐振动的物理量之间的对应关系如表4-1所示。表4-1 旋转矢量与简谐振动的物理量之间的对应关系旋转矢量是研究简谐振动的一种比较直观的方法,可以使运动的各个物理量表现得直观,运动过程显示得清晰,有助于简化简谐振动讨论中的数学处理。但必须指出,旋转矢量本身并不在作简谐振动,而是旋转矢量端点的投影点在作简谐振动。问题:简谐振子从平衡位置运动到最远点所需的时间为吗?走过该距离的一半所需的时间是吗?振子从平衡位置出发经历时运动的位移是多少?解析 从平衡位置运动到最远点对应旋转矢量图4-5中的角度变化是,所需的时间振子的速度不是常数,振子做变速直线运动,所以走

8、过该距离的一半所需的时间不是。振子从平衡位置运动到处(OM 位置)时,振幅矢量转过了的角度,即图4-5即振子从平衡位置运动到所用的时间是,而不是。振子从运动到平衡位置所用的时间是。振子从平衡位置出发经历时运动的位移是疑难点2 当一个弹簧振子的振幅加倍时,则振动周期、最大速度、质点受力最大值和振动能量如何变化?解析 弹簧振子的振幅一般由初始条件确定。振幅加倍时,振动周期不变,因为对于给定的弹簧振子系统其周期是一定的,即;最大速度的表达式是,所以振幅加倍时最大速度也加倍,质点受力最大值为f=kA,所以振幅加倍时受力最大值也加倍;简谐振动系统中机械能守恒为,所以振幅加倍时振动能量变为原来4倍4.5习

9、题解答4.1 两根轻弹簧和一质量为m的物体组成一振动系统,弹簧的劲度系数为k1和k2,串联后与物体相接,则此系统的固有频率为等于 k1k2习题4.1图m(A) (B) (C) (D) 解析:正确答案(B)两弹簧k1和k2串联后可等效为劲度系数k的弹簧,设k1和k2的形变量分别为x1和x2,k的形变量为 x,则有xx1+x2,亦即据此可确定系统的固有频率为4.2 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) (B)/2 (C) 0 (D) 解析:正确答案(C)由已知条件可知其

10、初始时刻的位移正向最大。利用旋转矢量图可知,初相相位是0。选(C)4.3 用余弦函数描述一简谐振动。已知振幅为A,周期为T,初相,则振动曲线为 习题4.3图解析:正确答案(A)由已知条件可知:初始时刻振动的位移是,速度是,方向是向y轴正方向,则振动曲线上t=0时刻的斜率是正值。习题4.4图4.4 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为: (A)cm(B)cm(C)cm(D)cm解析:正确答案(D)由振动图像可知,初始时刻质点的位移是,且向y轴负方向运动,下图是其对应的旋转矢量图,由图可知,其初相位是,振动曲线上给出了质点从到的时间是1s,其对

11、应的相位从变化到,所以它的角速度。简谐振动的振动方程为4.5 质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 (A) T/4 (B) T/2(C) T (D) 2T解析:正确答案(B)质点作简谐振动的动能表达式是,可见其变化的周期是简谐振动周期的。4.6 设某人一条腿的质量为m,长为,当他以一定频率行走时最舒适,试用一种简单的模型估算出该人行走最舒适的频率应为 (A)(B)(C)(D)解析:正确答案(D)可以将人行走时腿的摆动当作复摆模型,这样人行走时最舒适的频率应是复摆的简谐振动频率。此人的一条腿可看成是一个质量为m,长为的细长杆,它绕端点的转动惯量,根据复摆的周期公式,这里。故

12、频率习题4.7图4.7 图中所画的是两个简谐振动的振动曲线。若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) (B)(C) (D)0解析:正确答案(B)由振动曲线可知,这是两个同振动方向,同频率简谐振动,它们的相位差是,运动方程分别是和,它们的振幅不同,对于这样两个简谐振动,可用旋转矢量法,很方便求得合运动方程是。4.8 质点作谐振动,周期为T,当它由平衡位置向x轴负方向运动时,从处到-A处这段路程所需要的时间为 (A) (B) (C) (D)解析:正确答案(B)已知条件结合对应的旋转矢量图,它由平衡位置向x轴负方向运动时在处对应的相位是,位移是-A处对应的相位是,所以这段路程的相位差

13、是,对应的时间是4.9 弹簧振子作简谐振动,已知此振子势能的最大值为100J,当振子处于最大位移的一半时其动能为 (A)25J (B)50J (C)75J (D)100J解析:正确答案(C)物体做简谐振动时,振子势能的表达式是,其动能和势能都随时间做周期性变化,物体通过平衡位置时,势能为零,动能达到最大值;位移最大时,势能达到最大值,动能为零,但其总机械能却保持不变。当振子处于最大位移的一半时其势能为,所以此时的动能是。4.10一质点作简谐振动,速度最大值,振幅A=2cm。若令速度具有正最大值的那一时刻为t=0,则振动表达式为。解析:速度的最大值,A=0.02m,所以。振动的一般表达式,现在只

14、有初相位没确定,速度具有正最大值的时位于原点处,由旋转矢量法可知:,振动表达式为4.11已知一个谐振子的振动曲线如图所示,求:(1)a、b、c、d、e各状态的相位分别为 。习题4.11图解析:0、结合旋转矢量图,振动曲线上的a、b、c、d、e对应旋转矢量图上的a、b、c、d、e,所以其相位分别是0、习题4.12图4.12 一简谐振动的旋转矢量图如图所示,振幅矢量长2cm,则该简谐振动的初相为 ,振动方程为。解析:,振动方程的一般表达式是,是指t=0时对应的相位,也是初相位。由图可知t=0时的角度是,所以该简谐振动的初相为。角速度是。代入振动方程可得。4.13 一单摆的悬线长l=1.5m,在顶端

15、固定点的竖直下方0.45m处有一小钉,如图所示。设摆动很小,则单摆的左右两方振幅之比的近似值为 。习题4.13图解析:0.84左右摆动能量应相同,应有,所以4.14 质点按如下规律沿ox轴作简谐振动:,求此振动的周期、振幅、初相、速度最大值和加速度最大值。解析:本题属于由运动方程求解简谐振动各特征量的问题,可采用比较法求解。即将已知的简谐运动方程与简谐运动方程的一般形式作比较,即可求得各特征量,而速度和加速度的计算与质点运动学中由运动方程求解速度和加速度的计算方法相同。将该简谐振动的表达式与简谐运动方程的一般形式作比较后可得:周期是0.25s, 振幅是0.1m, 初相位是,速度最大值,加速度最

16、大值习题4.15图4.15 质点的振动曲线如图所示。试求:(1)振动表达式(2)点P对应的相位(3)到达点P对应位置所需时间。解析:(1)根据振动曲线对应的旋转振幅矢量可知,初相,从t=0到t=1s时间内相位差为,所以角频率为可得振动表达式为(2)P点相对应的相位为0。(3)到达P点所需时间为4.16 沿x轴作简谐振动的小球,振幅A=0.04m,速度的最大值。若取速度为正的最大值时t=0。试求:(1)振动频率;(2)加速度的最大值;(3)振动的表达式。解析:速度的最大值,A=0.04m,。(2)加速度的最大值。(3)速度为正的最大值时t=0,由旋转矢量法可知:4.17 物体沿x轴作简谐振动,振

17、幅为6.0cm,周期为2.0s,在 t=0时物体位于 3.0cm处且向负x方向运动求:(1)初相位;(2)t1.0s时,物体的位置、速度和加速度分析:初相位的确定可采用两种方法:旋转矢量法和解析法。解析; (1)取平衡位置为坐标原点,质点的运动方程可写为,现在用旋转矢量法求解初相位。根据初始条件,初始时刻旋转矢量 A 的矢端应在图中的M位置,所以.M(2)依题意,A=0.06m,T=2.0s,则.质点的运动方程可写为,t=1.0s代入上式,可得:把已知量代入上式可得:、? 4.18 在一平板上放一质量为m=2kg的物体,平板在竖直方向作简谐振动,其振动周期为T=0.5s,振幅A=4cm,求:(

18、1)物体对平板的压力的表达式;(2)平板以多大的振幅振动时,物体才能离开平板?解析:(1)设平衡位置为坐标原点,向上为正方向,t=0时刻,振动的相位为零,GN则平板的运动方程是物体的运动和平板相同。分析物体受力可知: 所以根据牛顿第三定律可知物体对平板的压力与平板对物体的支持力是一对作用力与反作用力。所以物体对平板的压力(2)当平板振动的最大加速度大于g时,物体能离开平板习题4.19图4.19一弹簧振子由弹性系数为k的轻弹簧和质量为M的物块组成,将弹簧的一端与顶板相连。开始时物块静止,一颗质量为m、速度为v0的子弹由下而上射入物块,且留在物块中。求子弹留在物块中系统的振幅与周期,并求出系统的总

19、振动能量。解析:子弹击中物块后系统的角频率为,所以周期为。设子弹击中物块后系统获得速率为v,由动量守恒定律可得.子弹进入物块后,振子的平衡位置改变了,以新的平衡位置为坐标原点,竖直向下为x轴正方向。以子弹进入物块的瞬间为计时零点,则t=0时刻,振子的初位移为,其中为子弹未进入物块时弹簧的伸长量,;为子弹进入物块后弹簧的伸长量,因此方法一:根据已知条件可得振子的振幅为:系统的总振动能量方法2:子弹射入物块后,系统的机械能守恒,所以系统的总振动能量即为初始时刻的振动能量,4.20 一物体质量为0.25 kg,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 Nm1,如果起始振动时具有势能0.06J和动能0.02J,求 (1) 振幅; (2) 动能恰等于势能时的位移; (3) 经过平衡位置时物体的速度。解析:物体做简谐振动时,振子势能的表达式是,动能表达式是。其动能和势能都随时间做周期性变化,物体通过平衡位置时,势能为零,动能达到最大值;位移最大时,势能达到最大值,动能为零,但其总机械能却保持不变为。(1) 由于振动过程总机械能却保持不变,A=0.08m。(2) 动能恰等于势能时,也就是此时势能是总机械能的一半,(3)通过平衡位置时,势能为零,动能达到最大值,此时, .4.21一作简谐振动的振动系统,振子质量为2kg,系统振动频率为1000Hz,振幅为0.5cm,则其振动能量是多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论