![高等数学大学课件10-习题课_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-9/13/13ebfd85-d53a-40d1-9f98-ba09d60b9108/13ebfd85-d53a-40d1-9f98-ba09d60b91081.gif)
![高等数学大学课件10-习题课_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-9/13/13ebfd85-d53a-40d1-9f98-ba09d60b9108/13ebfd85-d53a-40d1-9f98-ba09d60b91082.gif)
![高等数学大学课件10-习题课_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-9/13/13ebfd85-d53a-40d1-9f98-ba09d60b9108/13ebfd85-d53a-40d1-9f98-ba09d60b91083.gif)
![高等数学大学课件10-习题课_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-9/13/13ebfd85-d53a-40d1-9f98-ba09d60b9108/13ebfd85-d53a-40d1-9f98-ba09d60b91084.gif)
![高等数学大学课件10-习题课_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-9/13/13ebfd85-d53a-40d1-9f98-ba09d60b9108/13ebfd85-d53a-40d1-9f98-ba09d60b91085.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十章 微分方程 习题课,一、基本内容 1、基本概念,微分方程凡含有未知函数的导数或微分的方程叫微分方程,微分方程的阶微分方程中出现的未知函数的最 高阶导数的阶数称为微分方程的阶,微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解,通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解,特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解,初始条件用来确定任意常数的条件.,初值问题求微分方程满足初始条件的解的问题,叫初值问题,(1) 可分离变量的微分方程,解法,分离变量法,2、一阶微分方程的解法,(2) 齐次方程,解法,作变量
2、代换,齐次方程,(其中h和k是待定的常数),否则为非齐次方程,(3) 可化为齐次的方程,解法,化为齐次方程,(4) 一阶线性微分方程,上方程称为齐次的,上方程称为非齐次的.,齐次方程的通解为,(使用分离变量法),解法,非齐次微分方程的通解为,(常数变易法),其中,形如,(5) 全微分方程,注意:,解法,应用曲线积分与路径无关., 用直接凑全微分的方法.,通解为,(6) 可化为全微分方程,形如,3、可降阶的高阶微分方程的解法,解法,特点,型,接连积分n次,得通解,型,解法,代入原方程, 得,特点,型,解法,代入原方程, 得,、线性微分方程解的结构,(1)二阶齐次方程解的结构:,(2)二阶非齐次线
3、性方程的解的结构:,、二阶常系数齐次线性方程解法,n阶常系数线性微分方程,二阶常系数齐次线性方程,二阶常系数非齐次线性方程,解法,由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.,特征方程为,特征方程为,推广: 阶常系数齐次线性方程解法,、二阶常系数非齐次线性微分方程解法,二阶常系数非齐次线性方程,解法待定系数法.,二、例题,例1,解,原方程可化为,代入原方程得,分离变量,两边积分,所求通解为,例2,解,方程为全微分方程.,(1) 利用原函数法求解:,故方程的通解为,(2) 利用分项组合法求解:,原方程重新组合为,故方程的通解为,(3) 利用曲线积分求解:,故方程的通解为,例3,解,代入方程,得,故方程的通解为,例4,解,特征方程,特征根,对应的齐次方程的通解为,设原方程的特解为,原方程的一个特解为,故原方程的通解为,解得,所以原方程满足初始条件的特解为,例5,解,特征方程,特征根,对应的齐方的通解为,设原方程的特解为,解得,故原方程的通解为,即,例6,解,()由题设可得:,解此方程组,得,()原方程为,由解的结构定理得方程的通解为,解,例7,则由牛顿第二定律得,解此方程得,代入上式得,可解得此二阶常系数非齐次线性微分方程的通解为,即,亦即,分析:此等式中含有积分上限函数,因此想到利用积分,上限函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年山东公务员考试行测试题
- 2025年太阳能光伏组件安装服务合同
- 2025年商业地产租赁协议深度剖析
- 2025年医院食堂食用油采购协议
- 2025年紫外光固化油墨项目规划申请报告
- 2025年互联网用户权益协议
- 2025年货运司机劳动合同
- 2025年肿瘤类生物制品项目提案报告模范
- 2025年保障性住房贷款合同
- 2025年标准个人古董押借款合同样本
- 学校安全隐患排查治理工作台账
- GB/T 8151.13-2012锌精矿化学分析方法第13部分:锗量的测定氢化物发生-原子荧光光谱法和苯芴酮分光光度法
- 2023年辽宁铁道职业技术学院高职单招(英语)试题库含答案解析
- GB/T 39274-2020公共安全视频监控数字视音频编解码技术测试规范
- GB/T 23800-2009有机热载体热稳定性测定法
- 犯罪学全套教学课件
- T-SFSF 000012-2021 食品生产企业有害生物风险管理指南
- 2023年上海市闵行区精神卫生中心医护人员招聘笔试题库及答案解析
- 水库工程施工组织设计
- 售电公司与电力用户委托交易代理合同
- 基础护理学试题及答案(各章节)-基础护理学第四版试题及答案
评论
0/150
提交评论