高中数学 第23课——对数函数(1)教案 (新人教B版)教师版_第1页
高中数学 第23课——对数函数(1)教案 (新人教B版)教师版_第2页
高中数学 第23课——对数函数(1)教案 (新人教B版)教师版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二十三课时 对数函数(1)【学习导航】 知识网络 数图象性质值域定义域定义应用对函数学习要求 1要求了解对数函数的定义、图象及其性质以及它与指数函数间的关系。2了解对数函数与指数函数的互为反函数,能利用其相互关系研究问题,会求对数函数的定义域;3记住对数函数图象的规律,并能用于解题;4培养培养学生数形结合的意识用联系的观点研究数学问题的能力。自学评价1 对数函数的定义:函数 叫做对数函数(logarithmic function),定义域是 思考:函数与函数的定义域、值域之间有什么关系?2. 对数函数的性质为图象性质(1)定义域:(2)值域:(3)过点,即当时,(4)在(0,+)上是增函数(

2、4)在上是减函数3. 对数函数的图象与指数函数的图象关于直线对称。画对数函数的图象,可以通过作关于直线的轴对称图象获得,但在一般情况下,要画给定的对数函数的图象,这种方法是不方便的。所以仍然要掌握用描点法画图的方法,注意抓住特殊点(1,0)及图象的相对位置。4.指数函数与对数函数称为互为反函数。指数函数的定义域和值域分别是对数函数的值域和定义域。5一般地,如果函数存在反函数,那么它的反函数,记作思考:互为反函数的两个函数的定义域和值域有什么关系?原函数的定义域和值域分别是反函数的值域和定义域。【精典范例】例1:求下列函数的定义域(1); (2) ; (3) (4)分析:此题主要利用对数函数的定

3、义域求解。(1)由得,函数的定义域是;(2)由得,函数的定义域是(3)得或函数的定义域是(4)由 得,函数的定义域是例2:利用对数函数的性质,比较下列各组数中两个数的大小:(1),;(2),;(3),; (4),【解】(1)对数函数在上是增函数,于是;(2)对数函数在上是减函数,于是;(3), ,;(4),而(1)点评: 本例是利用对数函数的增减性比较两个对数的大小,当不能直接进行比较时,可在两个对数中间插入一个已知数(如1 或0),间接比较上述两个对数的大小。例3若且,求的取值范围 (2)已知,求的取值范围;【解】(1)当时在上是单调增函数,当时在上是单调减函数,综上所述:的取值范围为(2)当,即时由, 解得: 当,即时由, 解得: ,此时无解。综上所述:的取值范围为点评:本题的关键是利用对数函数的单调性解不等式,一定要注意对数函数定义域。追踪训练一1.求函数的定义域,并画出函数的图象。2. 比较下列各组数中两个值的大小:(1),; (2),;(3),.(4),3.解下列方程:(1) (2)(3)(4)4解不等式:(1)(2)答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论