八年级数学下册《9.3 反比例函数的应用》教学案 苏科版_第1页
八年级数学下册《9.3 反比例函数的应用》教学案 苏科版_第2页
八年级数学下册《9.3 反比例函数的应用》教学案 苏科版_第3页
八年级数学下册《9.3 反比例函数的应用》教学案 苏科版_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、9.3反比例函数的应用课 题9.3反比例函数的应用教学目标:1.能灵活运用反比例函数的知识解决实际问题.2.经历“实际问题建立模型拓展应用”的过程培养分析问题,解决问题的能力教学重点:运用反比例函数的意义和性质解决实际问题.教学难点:把实际问题转化为反比例函数这一数学模型,渗透转化的数学思想.一、温故知新:回忆:什么是反比例函数?其图象是什么?反比例函数有哪些性质?二、自主探究:1.小明将一篇24000字的社会调查报告录入电脑,打印成文.如果小明以每分钟120字的速度录入,他需要多长时间才能完成录入任务?录入文字的速度V(字/min)与完成录入的时间t(min)有怎样的函数关系?小明希望能在3

2、h内完成录入任务,那么他每分钟至少应录入多少个字?三、合作交流:小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨: 蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系? 如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米? 由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求? (保留两位小数)四、自主展示:1.某蓄水池的排水管每小时排水8m3 ,6h可将满池水全部排空. 蓄水池的容积是多少? .如果增加排水管,使每小时排

3、水量达到Q(m3),那么将满池水排空所需时间t(h)将如何变化? 写出t与Q之间关系式. .如果准备在5小时内将满池水排空,那么每小时的排水量至少 . 已知排水管最多为每小时12 m3,则至少_ _h可将满池水全部排空. 2.课本P74练习第2题3.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kpa)是气体体积V(m3)的反比例函数,其图象如图所示. 写出这一函数表达式; 当气体体积为P/kpa.V/m3A(0.8,120)P/kpa.V/m3A(0.8,120)P/kpa.V/m3A(0.8,120)P/kpa.V/m3A(0.8,120)P/kpa.V/m3A(0.8,1

4、20)P/kpa.V/m3A(0.8,120)1m3时,气压时多少? 当气球内的气压大于140kpa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?4.码头工人以每天30吨的速度往一轮船上装载货物,把轮船装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系? 由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?5.如图,矩形ABCD中,AB6,AD8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.6.为了预

5、防流行性感冒,某学校对教室采用药熏消毒法进行消毒已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示)现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题: 药物燃烧时y关于x的函数关系式为 ,自变量的取值范围是 ;药物燃烧后y与x的函数关系式为 ; 研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过 分钟后,学生才能回到教室;研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有

6、效?为什么?五.通过本节课的学习,你有哪些收获? 实际问题建立反比例关系式解决实际问题六、自我检测:1.某厂现有800吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是( )(A) y (x0) (B) y (x0) (C)y300x (x0) (D)y300x(x0)2.已知菱形的面积为定值,它的两条对角线长分别为x,y,则x与y之间的函数图象是( ) A.BCD3.A、B两城市相距720千米,一列火车从A城去B城 火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是 若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 4.有一面积为60的梯形,

7、其上底长是下底长的,若下底长为x,高为y,则y与x的函数关系是 5.美国的一种新型汽车可装汽油500L,若汽车每小时用油量为 xL用油时间y(h)与每小时的用油量之间的函数关系式可表示为 每小时的用油量为25L,则这些油可用的时间为 如果要使汽车连续行驶50h不需供油,那么每小时用油量的范围是 _3_2_1_200_150_100_50_0_A_V_P(2.5,64)6某气球内充满了一定质量的气体,当温度不变时气球内气体的气压p(千帕)是气体V(立方米)的反比例函数,其图象如下图: (1)观察图象经过已知点_ (千帕) (2)求出它们的函数关系式 (3)当气球的体积是0.8立方米时,气球内的气

8、压是多少千帕?(立方米)7.已知某矩形的面积为20cm2.写出其长y与宽x之间的函数表达式. 当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?如果要求矩形的长不小于8cm,其宽至多要多少?8.小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到200度的近视眼镜镜片的焦距为0.4m.小丽只知道自己的眼镜是400度.我们大家正好学过反比例函数了,你能帮助她帮她求出她的近视眼镜片的焦距是多少吗?9.设ABC中BC边的长为x(cm),BC上的高AD为y(cm).已知y关于x的函数图象过点(3,4).求y关于x的函数解析式和ABC 的面积. 画出函数的图象,并利用图象,求当2x8时y的取值范围.10.学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天.则y与x之间有怎样的函数关系? 画函数图象. 若每天节约0.1吨,则这批煤能维持多少天?11.制作一种产品,需先将材料加热到达60后,再进行操作设该材料温度为y(),从加热开始计算的时间为x(分钟)据了解,设该材料加热时,温度y与时间x完成一次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论