




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,2.5 矩形,第2章 四边形,优 翼 课 件,导入新课,讲授新课,当堂练习,课堂小结,2.5.1 矩形的性质,八年级数学下(XJ) 教学课件,学习目标,1.理解矩形的概念,知道矩形与平行四边形的区别与 联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问 题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩形,定义
2、:有一个角是直角的平行四边形叫做矩形.,归纳总结,平行四边形不一定是矩形.,思考 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?,可以从边,角,对角线等方面来考虑.,活动2: 准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等. (1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.,A,B,C,D,O,物体,测量,(实物),(形象图),(2)根据测量的结果,你有什么猜想?,猜想1 矩形的四个角都是直角.,猜想2 矩形的对角线相等.,你能证明
3、吗?,证明:由定义,矩形必有一个角是直角, 设A = 90 ABDC,ADBC, B=C=D =90. (两直线平行,同旁内角互补) 即矩形ABCD的四个角都是直角.,已知,矩形ABCD. 求证: A=B=C=D=90.,A,B,C,D,证一证,证明:四边形ABCD是矩形, AB=DC,ABC=DCB=90, 在ABC和DCB中, AB=DC,ABC=DCB,BC= CB, ABCDCB. AC=DB.,A,B,C,D,O,如图,四边形ABCD是矩形,ABC=90,对角线AC与DB相交于点O. 求证:AC=DB.,矩形除了具有平行四边形所有性质,还具有: 矩形的四个角都是直角. 矩形的对角线相
4、等.,归纳总结,几何语言描述: 在矩形ABCD中,对角线AC与DB相交于点O. ABC=BCD=CDA=DAB =90,AC=DB.,A,B,C,D,O,例1 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AOB=60,AB=4 ,求矩形对角线的长.,解:四边形ABCD是矩形. AC = BD, OA= OC= AC,OB = OD = BD , OA = OB. 又AOB=60, OAB是等边三角形, OA=AB=4, AC=BD=2OA=8.,A,B,C,D,O,典例精析,矩形的对角线相等且互相平分,例2 如图,在矩形ABCD中,E是BC上一点,AE=AD,DFAE ,垂足为F.
5、求证:DF=DC.,A,B,C,D,E,F,证明:连接DE. AD =AE,AED =ADE. 四边形ABCD是矩形, ADBC,C=90. ADE=DEC, DEC=AED. 又DFAE, DFE=C=90.,又DE=DE, DFEDCE, DF=DC.,例3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于点E,AD8,AB4,求BED的面积,解:四边形ABCD是矩形, ADBC,A90, 23. 又由折叠知12, 13,BEDE. 设BEDEx,则AE8x. 在RtABE中,AB2AE2BE2, 42(8x)2x2, 解得x5,即DE5. SBED DEAB 5410.
6、,矩形的折叠问题常与勾股定理结合考查,思考:矩形是不是中心对称图形? 如果是,那么对称中心是什么?,矩形是中心对称图形,对角线的交点是它的对称中心.,由于矩形是平行四边形,因此,O,做一做 请同学们拿出准备好的矩形纸片,折一折,观察并思考.矩形是不是轴对称图形?如果是,那么对称轴有几条?,矩形是轴对称图形,过每一组对边中点的直线都是矩形的对称轴.,练一练,1.如图,在矩形ABCD中,对角线AC,BD交于点O, 下列说法错误的是 () AABDC BAC=BD CACBD DOA=OB,A,B,C,D,O,C,2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的
7、面积是矩形ABCD面积的_.,3.如图,在矩形ABCD中,AEBD于E,DAE:BAE3:1,求BAE和EAO的度数,解:四边形ABCD是矩形, DAB90, AO AC,BO BD,ACBD, BAEDAE90,AOBO. 又DAE:BAE3:1, BAE22.5,DAE67.5. AEBD, ABE90BAE9022.567.5, OABABE67.5 EAO67.522.545.,当堂练习,1.矩形具有而一般平行四边形不具有的性质是 ( ) A.对角线相等 B.对边相等 C.对角相等 D.对角线互相平分 2.若矩形的一条对角线与一边的夹角为40,则两条对角线相交的锐角是 ( ) A.20
8、 B.40 C.80 D.10,A,C,3.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_cm,2.5,4.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BEAC交DC的延长线于点E. (1)求证:BD=BE, (2)若DBC=30 , BO=4 ,求四边形ABED的面积.,A,B,C,D,O,E,(1)证明:四边形ABCD是矩形, AC= BD, ABCD. 又BEAC, 四边形ABEC是平行四边形, AC=BE, BD=BE.,(2)解:在矩形ABCD中,BO=4, BD = 2BO =24=8. DBC=30, CD= BD= 8=4, AB=CD=4,DE=CD+CE=CD+AB=8. 在RtBCD中, BC= 四边形ABED的面积= (4+8) = .,A,B,C,D,O,E,5.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PEAC于E,PFBD于F,求PE+PF的值.,解:连接OP. 四边形ABCD是矩形, DAB=90,OA=OD=OC=OB, SAOD=SDOC=SAOB=SBOC = S矩形ABCD= 68=12. 在RtBAD中,由勾股定理得BD=10, AO=OD=5, SAPO+SDPO=SAO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 整合网络营销与传统营销
- 联想神州数码品牌形象策略书样本
- 河北省石家庄市名校2025年中考化学试题模拟题及解析(浙江卷)含解析
- 山东石油化工学院《生物医药品》2023-2024学年第二学期期末试卷
- 漳州城市职业学院《英语演讲与辩论理解当代中国》2023-2024学年第二学期期末试卷
- 湖南机电职业技术学院《中医食疗》2023-2024学年第二学期期末试卷
- 北京市×区个人简历
- 江苏警官学院《营销理论前沿专题》2023-2024学年第二学期期末试卷
- 河北外国语学院《新材料经济与管理》2023-2024学年第二学期期末试卷
- 2025年河北省衡水名校高三一轮复习阶段性考试(英语试题理)试题含解析
- 农机质量跟踪调查表
- 刑民交叉案件的司法认定
- 2025年度股权合作协议书新版:跨境电商平台股权合作协议
- GB/T 33136-2024信息技术服务数据中心服务能力成熟度模型
- 《保护地球爱护家园》课件
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 2024年度产学研合作与科研奖励协议3篇
- 电力工程线路交叉跨越施工主要工序及特殊工序施工方法
- 【MOOC】软件度量及应用-中南大学 中国大学慕课MOOC答案
- 24秋国家开放大学《儿童发展问题的咨询与辅导》周测验参考答案
- 2025届江苏省苏州市重点中学高三第二次模拟考试英语试卷含解析
评论
0/150
提交评论