



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.5定积分的概念知识系统1.定积分的概念一般来说,让函数在区间上连续,并使用点将间隔分成多个单元,每个单元的长度为()。从每个单元格中取一个点,并得出求和公式:如果无限接近(即无限接近),上述和公式接近一个常数,那么这个常数就称为函数在区间上的定积分。注为:这里它成为被积函数,称为积分变量,即积分区间、积分上限和积分下限。描述:(1)定积分是一个常数,也就是说,一个接近无穷大的常数叫做,而不是。(2)根据定义确定积分的一般方法是:分段:等分区间;近似替代:取点;求和:取极限:(3)曲线边缘图形区域:变速移动距离;用可变力工作2.定积分的几何意义如果函数是连续的,并且在区间内是常数,那么定积分
2、表示被直线()和曲线包围的弯曲梯形的面积。注:一般来说,定积分的几何意义是轴、函数图形和直线之间面积的代数和。轴上方的区域带正符号,而轴下方的区域带负符号。3.定积分的性质根据定积分的定义,不难得到定积分的下列性质:属性1性质2(其中k是除0以外的常数)(定积分的线性性质)性质3(定积分的线性性质)性质4(定积分与积分区间的可加性)属性5如果,那么属性6如果它存在于间隔上,则拨号方式1.寻找:曲面梯形面积的四个步骤第一步:细分。随意在间隔中插入每个分支点,并将其等分为单元。间隔的长度,第二步:近似替换,“用直线替换”。用矩形面积代替小曲线边梯形的近似面积,得到小曲线边梯形的近似面积。第三步:总
3、结。第四步:接受极限。描述:(1)总结以上步骤,流程图如下:分段通过直接求和而不是曲线求和来近似(2)曲线边缘的面积不是近似值,而是真实值2.一般来说,如果一个物体作变速直线运动,速度函数为0,那么我们也可以用除法、近似代换、求和和取极限的方法,用“以常数代换”的方法和无限近似的思想求出它在abb范围内的位移.示例扩展例1:计算被抛物线、直线和轴包围的平面图形的面积。思考:(1)弯曲梯形和“直形”有什么区别?(2)求这个弯曲梯形面积s的问题能转化为求“直线图形”面积的问题吗?练习:找出附图中的区域例2。当汽车匀速直线行驶时,经过一段时间后行驶的距离是。如果汽车以可变速度直线行驶,并且此时的速度为(单位为km/h),那么在01(单位为h)的时间段内行驶的距离(单位为km)是多少?(思想:利用归约到匀速直线运动距离的思想方法和每个单元之间的无限逼近,我们可以找到匀速直线运动距离)练习:在拉伸弹簧的过程中,力与伸长成正比,也就是说,力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雨伞进项合同范本
- 厨房保修合同范本
- 二零二五年度商铺租赁与品牌入驻管理合同
- 2025年度电子制造行业劳动合同解除及专利保护协议模板
- 金融居间合同范本
- 二零二五年度电力供应合同到期服务质量评估与续约协议
- 二零二五年度知识产权质押融资合同约定
- 2025年度民宿租赁服务与民宿客栈品牌推广合同
- 二零二五年度合同聘用制编制外合同工劳动权益保护合同
- 二零二五年度企业资质转让及知识产权保护合同
- GB/T 7631.5-1989润滑剂和有关产品(L类)的分类第5部分:M组(金属加工)
- GB/T 41326-2022六氟丁二烯
- GB/T 19470-2004土工合成材料塑料土工网
- GB/T 18913-2002船舶和航海技术航海气象图传真接收机
- 高中教师先进事迹材料范文六篇
- 烹饪专业英语课件
- 3d3s基本操作命令教程课件分析
- 人教版三年级语文下册晨读课件
- 传染病防治法培训讲义课件
- 河南大学版(2020)信息技术六年级下册全册教案
- 法律方法阶梯实用版课件
评论
0/150
提交评论