




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面直角坐标系,知识结构图,确定平面内点的位置,画两条数轴,互相垂直,有公共原点,建立平面直角坐标系,坐标(有序数对),(x, y),象限与象限内点的符号,特殊位置点的坐标,坐标系的应用,用坐标表示位置,用坐标表示平移,知识要点,1. 平面直角坐标系的意义:,在平面内有公共原点且互相垂直的,两条数轴组成平面直角坐标系。水平的数轴为X轴,铅直的数 轴为y轴,它们的公共原点O为直角坐标系的原点。,2. 象限: 两坐标轴把平面分成_,坐标轴上的点不属于 _。 可用有序数对(a ,b)表示平面内任一点P的坐标。a表示横坐标 ,b表示纵坐标。 各象限内点的坐标符号特点: 第一象限_,第二象限_ 第三象限
2、_,第四象限_。 坐标轴上点的坐标特点: 横轴上的点纵坐标为_,纵轴上的点 横坐标为_。,(+ ,+),(- ,+),(- ,-),(+ ,-),零,零,四个象限,任何一个象限,利用平面直角坐标系绘制某一区域的各点分布情况的平面 图包括以下过程: (1)建立适当的坐标系,即选择适当的点作为原点,确定x轴、 y轴的正方向; (注重寻找最佳位置) (2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度; (3)在坐标平面上画出各点,写出坐标名称。 一个图形在平面直角坐标系中进行平移,其坐标就要发生相 应的变化, 可以简单地理解为: 左、右平移纵坐标不变,横坐 标变,变化规律是左减右加, 上下平移
3、横坐标不变,纵坐标变 ,变化规律是上加下减。 例如: 当P(x ,y)向右平移a个单位长度,再向上平移b个单位长度后 坐标为p(x+a ,y+b)。,特殊点的坐标,(x,),(,y),在平面直角坐标系内描出(-2,2),(0,2),(2,2),(4,2),依次连接各点,从中你发现了什么?,平行于x轴的直线上的各点的纵坐标相同,横坐标不同.,平行于y轴的直线上的各点的横坐标相同,纵坐标不同.,在平面直角坐标系内描出(-2,3), (-2,2),(-2,0),(-2,-2),依次连接各点,从中你发现了什么?,P(a,b),A(a,-b),B(-a,b),C(-a,-b),对称点的坐标,1.下列各点
4、分别在坐标平面的什么位置上?,A(3,2) B(0,2) C(3,2) D(3,0) E(1.5,3.5) F(2,3),第一象限,第三象限,第二象限,第四象限,y轴上,x轴上,(+ , +),(- , +),(- , -),(+ , -),(0 , y),(X, 0),每个象限内的点都有自已的符号特征。,知识应用,3. 在平面直角坐标系中,有一点P(-4,2),若将P:,(1)向左平移2个单位长度,所得点的坐标为_; (2)向右平移3个单位长度,所得点的坐标为_; (3)向下平移4个单位长度,所得点的坐标为_; (4)先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_。,(-6,2
5、),(-1,2),(-4, -2),(1,5),2. 已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。,-1,4、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是。,5、点P(a-1,a2-9)在x轴负半轴上,则P点坐标是。,6、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。,(3 ,-2),(-4 ,0),3个单位,4个单位,(-3 ,-1),(0 ,5)或(0 ,-5),y,A,B,C,8.已知A(1,4),B(-4,0),C(2,0). ABC的面积是 9.将ABC向左平移三
6、个单位后,点A、B、C的坐标分别变为_,_,. 10.将ABC向下平移三个单位后,点A、B、C的坐标分别变为_,_,. 11.若BC的坐标不变, ABC的面积为6,点A的横坐标为-1,那么点A的坐标为_.,(-2,4),12,(-7,0),(-1,0),(-4,-3),(1,1),(2,-3),(-1,2)或(-1,-2),O,(1,4),(-4,0),(2,0),12、三角形ABC三个顶点A、B、C的坐标分别为A(2,-1),B(1,-3),C(4,-3.5)。,1 2 3 4 5 6,-6,7,6,5,4,2,3,1,-1,-2,-3,-4,-5,-6,-7,-5,-4,-3,-2,-1,y,x,0,(1)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标;,A,C,B,1 2 3 4 5 6,-6,7,6,5,4,2,3,1,-1,-2,-3,-4,-5,-6,-7,-5,-4,-3,-2,-1,y,x,0,(2)求出三角形 A1B1C1的面积。,D,E,分析:可把它补成一个梯形减去 两个三角形。,用直角坐标来表述物体位置,这是用什么方法来表述物体位置?,13. 图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三物理全套试题及答案
- 综艺传媒面试题及答案
- 生态移民面试题目及答案
- 育婴师情感支持与教育方法试题及答案
- 药品流通领域的知识点试题及答案
- 网站内容编辑试题及答案
- 药剂考试知识体系构建试题及答案
- 提升母猪护理技能的途径试题及答案
- 激光技术质量标准探讨试题及答案
- 六年级语文下册第二组口语交际感兴趣的民风民俗教案新人教版
- 2023年电气中级工程师考试题库
- 站台保洁服务方案
- 2024-2030年中国高端半导体激光芯片行业市场全景调研及发展前景研判报告
- 植物拓染非物质文化遗产传承拓花草之印染自然之美课件
- TD/T 1044-2014 生产项目土地复垦验收规程(正式版)
- 装修合同增项补充协议工程
- 脑胶质瘤诊疗指南2022年版
- 乳腺结节手术后的护理
- 电厂灰场环境风险评估报告
- 设备购置分析报告
- 《动物的家》课件
评论
0/150
提交评论