版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识结构,要点复习,例题解析,巩固练习,平面向量复习,平 面 向 量 复 习,表示,运算,实数与向量的积,向量加法与减法,向量的数量积,平行四边形法则,向量平行的充要条件,平面向量的基本定理,三 角 形 法 则,向量的三种表示,平 面 向 量 复 习,向量定义:,既有大小又有方向的量叫向量。,重要概念:,(1)零向量:,长度为0的向量,记作0.,(2)单位向量:,长度为1个单位长度的向量.,(3)平行向量:,也叫共线向量,方向相同或相反 的非零向量.,(4)相等向量:,长度相等且方向相同的向量.,(5)相反向量:,长度相等且方向相反的向量.,平 面 向 量 复 习,几何表示,: 有向线段,向量
2、的表示,字母表示,坐标表示,: (x,y),若 A(x1,y1), B(x2,y2),则 AB =,(x2 x1 , y2 y1),平 面 向 量 复 习,向量的模(长度),1. 设 a = ( x , y ),则,2. 若表示向量 a 的起点和终点的坐标分别 为A(x1,y1)、B (x2,y2) ,则,平 面 向 量 小 复 习,已知向量a=(5,m)的长度是13,求m.,答案: m = 12,平 面 向 量 复 习,1.向量的加法运算,A,B,C,AB+BC=,三角形法则,O,A,B,C,OA+OB=,平行四边形法则,坐标运算:,则a + b =,重要结论:AB+BC+CA=,0,设 a
3、 = (x1, y1), b = (x2, y2),( x1 + x2 , y1 + y2 ),AC,OC,平 面 向 量 复 习,2.向量的减法运算,1)减法法则:,O,A,B,OAOB =,2)坐标运算:,若 a=( x1, y1 ), b=( x2, y2 ),则a b=,3.加法减法运算率,a+b=b+a,(a+b)+c=a+(b+c),1)交换律:,2)结合律:,BA,(x1 x2 , y1 y2),平 面 向 量 复 习,例1 化简(1)(AB + MB)+ BO + OM (2) AB + DA + BD BCCA,分析,利用加法减法运算法则,借助结论,AB=AP+PB;AB=O
4、BOA;AB+BC+CA=0,进行变形.,解:,原式=,AB +(BO + OM + MB),= AB + 0,= AB,(1),(2),原式=,AB + BD + DA (BC + CA),= 0BA = AB,例1,平 面 向 量 复 习,练习2 如图,正六边形ABCDEF中,AB=a、BC=b、 AF=c,用a、b、c表示向量AD、BE、BF、FC.,A,F,E,D,C,B,a,c,b,答案:,AD=2 b,BE=2 c,BF= ca,FC=2 a,思考: a、b、c 有何关系?,b =a + c,0,平 面 向 量 小 复 习,练习3 (课本P149 复习参考题五 A组 7) 已知点A
5、(2,1)、B(1,3)、C(2,5)求 (1)AB、AC的坐标;(2)AB+AC的坐标; (3) ABAC的坐标.,答案: (1) AB=(3,4), AC =(4, 4 ),(2)AB+AC=( 7,0 ),(3) ABAC= (1,8),平 面 向 量 复 习,实数与向量 a 的积,定义:,坐标运算:,其实质就是向量的伸长或缩短!,a是一个,向量.,它的长度 |a| =,| |a|;,它的方向,(1) 当0时,a 的方向,与a方向相同;,(2) 当0时,a 的方向,与a方向相反.,若a = (x , y), 则a =, (x , y),= ( x , y),平 面 向 量 复 习,非零向
6、量平行(共线)的充要条件,ab,a=b (R且b0),向量表示:,坐标表示:,设a = ( x1, y1 ) , b = ( x2, y2 ),则,ab,x1y2x2y1=0,平 面 向 量 复 习,平面向量的基本定理,设 e1和 e2是同一平面内的两个不共线向量,那么对该平面内的任何一个向量 a ,有且只有一对实数1、2 使,a =1 e1 +2 e2,不共线的向量 e1和 e2 叫做表示这一平面 内所有向量 的一组基底,1 e1 +1 e2 =2 e1 +2 e2,1= 2, 1=2,向量相等的充要条件,1、平面向量数量积的定义:,数量积,3、运算律:,2、数量积的坐标运算,4、向量垂直的
7、判定,5、向量的模,6、向量的夹角,坐标表示,向量表示,0, 180,cos=,2,1,2,2,2,1,1,1,2,1,PP,P,P,y,x,P,y,x,P,P,P,y,x,P,l,l,=,即,),,,(,),,,,(,,其中,所成定比为,)分有向线段,,,(,点,定比分点P的坐标,中点坐标,7、线段的定比分点,平 面 向 量 复 习,例2 已知 a=(1, 2), b=(3, 2), 当k为何值时, ka+b与a3b平行? 平行时它们是同向还是反向?,分析,先求出向量ka+b 和a3b的坐标,再根据向量平行充要条件的坐标表示, 得到关于k方程, 解出k, 最后它们的判断方向.,解: ka+b
8、=k(1, 2)+(3, 2)=,思考: 此题还有没有其它解法?,(k3,2k+2),a3b=(1, 2)3(3, 2)=,(10, 4),(ka+b)(a3b),4(k3)10(2k+2)=0,K=, ka+b=,=,(a3b),它们反向,例2,平 面 向 量 小 复 习,n为何值时, 向量a=(n,1)与b=(4,n)共线且方向相同?,答案: n= 2,思考: 何时 n=2 ?,平 面 向 量 复 习,例3,设AB=2(a+5b),BC= 2a + 8b,CD=3(a b), 求证:A、B、D 三点共线。,分析,要证A、B、D三点共线,可证,AB=BD关键是找到,解:,BD=BC+CD= 2a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 23604-2024钛及钛合金产品力学性能试验取样方法
- 黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)
- 赣南师范大学《环境监测》2022-2023学年第一学期期末试卷
- 阜阳师范大学《中小学音乐教材教法》2022-2023学年第一学期期末试卷
- 阜阳师范大学《经济数学一》2021-2022学年第一学期期末试卷
- 阜阳师范大学《表演基础理论》2021-2022学年第一学期期末试卷
- 无锡市2024-2025学年五年级上学期11月期中调研数学试卷二(有答案)
- 福建师范大学协和学院《外贸单证实务模拟操作》2022-2023学年第一学期期末试卷
- 福建师范大学《中国地理》2022-2023学年第一学期期末试卷
- 福建师范大学《教育学含教师职业道德》2021-2022学年第一学期期末试卷
- 4.2海水的性质第一课时教学设计高中地理人教版必修一
- 年度人力资源预算编制
- 爱丽丝梦游仙境读书分享
- 《狂犬病暴露预防处置工作规范(2023年版)》解读课件
- 学籍信息更改申请表
- 气候年景评估方法
- 一例骶尾部Ⅳ期压疮患者伤口的护理
- 中学开展性别平等教育的工作情况汇报多篇合集
- 高中化学课程思政的内涵及实施
- 仿生科学与技术
- 2017年单独招生考试技能模拟试题3
评论
0/150
提交评论