版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题三 立体几何研高考明考点年份卷别小题考查大题考查2017卷T7空间几何体的三视图与直观图、面积的计算T18面面垂直的证明,二面角的余弦值的求解T16三棱锥体积、翻折问题、最值问题卷T4空间几何体的三视图及体积的计算T19线面平行的证明,二面角的余弦值的求解T10空间异面直线所成角的余弦值的计算卷T8球的内接圆柱、圆柱的体积T19面面垂直的证明,二面角的余弦值的求解T16圆锥、空间线线角的求解2016卷T6空间几何体的三视图及表面积、体积的计算T18面面垂直的证明,二面角的余弦值的求解T11面面平行的性质及异面直线所成角的余弦值的计算卷T6空间几何体的三视图及表面积的计算T19线面垂直的证明
2、,二面角的正弦值的求解T14空间线面位置关系卷T9空间几何体的三视图及表面积的计算T19线面平行的证明,线面角的正弦值的求解T10三棱柱内接球体积的计算2015卷T6数学文化、锥体体积的计算T18面面垂直的证明,异面直线所成角的余弦值的求解T11空间几何体的三视图及柱、球体表面积的计算卷T6空间几何体的三视图及体积的相关计算T19空间位置关系,线面角的正弦值的求解T9三棱锥体积的计算,球表面积的计算析考情明重点小题考情分析大题考情分析常考点1.空间几何体的三视图(3年7考) 2.空间几何体的表面积与体积(3年11考) 3.与球有关的组合体的计算问题(3年4考)常考点高考对立体几何在解答题中的考
3、查比较稳定,空间线面位置关系中的平行或垂直的证明,空间角的计算是热点,题型主要有:1.空间位置关系的证明2.求空间角或其三角函数值偶考点1.空间线面位置关系的判断2.异面直线所成角的计算偶考点翻折与探索性问题的综合问题第一讲 小题考法空间几何体的三视图、表面积与 体积及位置关系的判定考点(一)主要考查利用三视图的画法规则及摆放规则,根据空间几何体确定其三视图,或根据三视图还原其对应直观图,或根据三视图中的其中两个确定另一个.空间几何体的三视图典例感悟典例(1)(2017惠州调研)如图所示,将图中的正方体截去两个三棱锥,得到图中的几何体,则该几何体的侧视图为()(2)(2016天津高考)将一个长
4、方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()解析(1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图由几何体的正视图和俯视图可知该几何体如图所示,故其侧(左)视图如图所示故选B.答案(1)B(2)B方法技巧1由直观图确定三视图的方法根据空间几何体三视图的定义及画法规则和摆放规则确定2由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,
5、调整实线和虚线所对应的棱、面的位置(3)确定几何体的直观图形状演练冲关1(2018届高三广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为()A5 B4 C3 D2解析:选B由题知可以作为该几何体的俯视图的图形可以为.故选B.2(2017北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A3 B2 C2 D2解析:选B在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC12.3(2017福州模拟)如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是()A2 B3 C4
6、 D5解析:选C由三视图知,该几何体是如图所示的四棱锥PABCD,易知四棱锥PABCD的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4,故选C.考点(二)主要考查空间几何体的结构特征、表面积与体积公式的应用,涉及的几何体多为柱体、锥体,且常与三视图相结合考查.空间几何体的表面积与体积典例感悟典例(1)(2016全国卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A1836 B5418C90 D81(2)(2017全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该
7、几何体的体积为()A90 B63 C42 D36(3)(2018届高三广西三市联考)如图是某几何体的三视图,则该几何体的体积为()A6 B9 C12 D18解析(1)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(333633)25418.故选B.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V321032663.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V3276
8、3.(3)该几何体是一个直三棱柱截去所得,如图所示,其体积为3429.答案(1)B(2)B(3)B方法技巧1求解几何体的表面积与体积的技巧(1)求三棱锥的体积:等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上(2)求不规则几何体的体积:常用分割或补形的方法,将不规则几何体转化为规则几何体求解(3)求表面积:其关键思想是空间问题平面化2根据几何体的三视图求其表面积或体积的步骤(1)根据给出的三视图还原该几何体的直观图(2)由三视图中的大小标识确定该几何体的各个度量(3)套用相应的面积公式或体积公式计算求解演练冲关1(2017合肥质检)一个几何体的三视图及其尺寸如图所示,则
9、该几何体的体积为()A. BC28D226解析:选A由三视图知,该几何体为三棱台,其上、下底面分别是直角边为2,4的等腰直角三角形,高为2,所以该几何体的体积V2244 2,故选A.2(2017沈阳质检)如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的表面积是()A366 B363C54 D27解析:选A由三视图知该几何体为底面是梯形的四棱柱,其表面积为S2(24)3234323366,故选A.3(2017山东高考)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为_解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的
10、四分之一圆柱体构成,V21121212.答案:2考点(三)主要考查与多面体、旋转体构成的简单组合体的有关切、接球表面积、体积的计算问题,其本质是计算球的半径.与球有关的组合体的计算问题典例感悟典例(1)(2016全国卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球若ABBC,AB6,BC8,AA13,则V的最大值是()A4 B.C6 D.(2)(2018届高三湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为(),A36 BC32D28解析(1)设球的半径为R,ABC的内切圆半径为2,R2.又2R3,R,Vmax3.故选B.(2)根据三视图,可知该几何体是一个
11、四棱锥,其底面是一个边长为4的正方形,高是2.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径三棱柱的底面是边长为4的正三角形,底面三角形的中心到三角形三个顶点的距离为2,其外接球的半径R,则外接球的表面积S4R24,故选B.答案(1)B(2)B方法技巧求解多面体、旋转体与球接、切问题的策略(1)过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题(2)利用平面几何知识寻找几何体中元素间的关系,或通过画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量
12、的关系,列方程(组)求解演练冲关1(2017全国卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A B. C. D.解析:选B设圆柱的底面半径为r,则r2122,所以圆柱的体积V1.2(2017江苏高考)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切记圆柱O1O2的体积为V1,球O的体积为V2,则的值是_解析:设球O的半径为R,因为球O与圆柱O1O2的上、下底面及母线均相切,所以圆柱的底面半径为R、高为2R,所以.答案:3(2017全国卷)已知三棱锥S ABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SA
13、AC,SBBC,三棱锥S ABC的体积为9,则球O的表面积为_解析:如图,连接AO,OB,SC为球O的直径,点O为SC的中点,SAAC,SBBC,AOSC,BOSC,平面SCA平面SCB,平面SCA平面SCBSC,AO平面SCB,设球O的半径为R,则OAOBR,SC2R.VS ABCVASBCSSBCAOAO,即9R,解得 R3,球O的表面积为S4R243236.答案:364(2018届高三浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为_,其外接球的表面积为_解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为44324.又直四棱柱的外接球的半径
14、R,所以四棱柱的外接球的表面积为4R225.答案:2425考点(四)主要考查利用空间点、直线、平面位置关系的定义,四个公理、八个定理来判断与点、线、面有关命题的真假或判断简单的线面平行垂直的位置关系.空间线面位置关系的判断 典例感悟典例(1)(2017全国卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()(2)(2016全国卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有
15、正确命题的编号)解析(1)法一:对于选项B,如图所示,连接CD,因为ABCD,M,Q分别是所在棱的中点,所以MQCD,所以ABMQ .又AB平面MNQ,MQ平面MNQ,所以AB平面MNQ.同理可证选项C、D中均有AB平面MNQ.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQAB.因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB平面MNQ.故选A.(2)对于,可以平行,也可以相交但不垂直,故错误对于,由线面平行的性质定理知存在直线l,nl,又m,所以m
16、l,所以mn,故正确对于,因为,所以,没有公共点又m,所以m,没有公共点,由线面平行的定义可知m,故正确对于,因为mn,所以m与所成的角和n与所成的角相等因为,所以n与所成的角和n与所成的角相等,所以m与所成的角和n与所成的角相等,故正确答案(1)A(2)方法技巧判断与空间位置关系有关命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定(3)借助反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断演练冲关1(20
17、17成都模拟)在直三棱柱ABCA1B1C1中,平面与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1平面.有下列三个命题:四边形EFGH是平行四边形;平面平面BCC1B1;平面平面BCFE.其中正确的命题有()A BC D解析:选C由题意画出草图如图所示,因为AA1平面,平面平面AA1B1BEH,所以AA1EH.同理AA1GF,所以EHGF.又ABCA1B1C1是直三棱柱,易知EHGFAA1,所以四边形EFGH是平行四边形,故正确;若平面平面BB1C1C,由平面平面A1B1C1GH,平面BCC1B1平面A1B1C1B1C1,知GHB1C1,而GHB1C1不一定成立,故错误
18、;由AA1平面BCFE,结合AA1EH知EH平面BCFE,又EH平面,所以平面平面BCFE,故正确综上可知,故选C.2(2017惠州调研)如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:直线BE与直线CF异面;直线BE与直线AF异面;直线EF平面PBC;平面BCE平面PAD.其中正确的有()A1个 B2个C3个 D4个解析:选B将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EFADBC,即直线BE与CF共面,错;因为B平面PAD,E平面PAD,EAF,所以BE与AF是异面直线,正确;因为EFADBC,E
19、F平面PBC,BC平面PBC,所以EF平面PBC,正确;平面PAD与平面BCE不一定垂直,错故选B.3(2017全国卷)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1 BA1EBDCA1EBC1 DA1EAC解析:选C法一:由正方体的性质,得A1B1BC1,B1CBC1,A1B1B1CB1,所以BC1平面A1B1CD.又A1E平面A1B1CD,所以A1EBC1.法二:A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,B、D错;A1E在平面BCC1B1上的投影为B1C,且B1CBC1,A1EBC1,故C正确;(证明:由条件易知,BC1B1C,BC1CE,又
20、CEB1CC,BC1平面CEA1B1.又A1E平面CEA1B1,A1EBC1.)A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错4(2017武昌调研)若四面体ABCD的三组对棱分别相等,即ABCD,ACBD,ADBC,给出下列结论:四面体ABCD每组对棱相互垂直;四面体ABCD每个面的面积相等;从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90且小于180;连接四面体ABCD每组对棱中点的线段相互垂直平分;从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长其中正确结论的序号是_解析:对于,如图(1),AE,CF分别为BD边上的高,由ADBC,ABCD
21、,BDDB可知ABDCDB,所以AE CF,DEBF,当且仅当ADAB,CDBC时,E,F重合,此时ACBD,所以当四面体ABCD为正四面体时,每组对棱才相互垂直,故错误;对于,由题设可知四面体的四个面全等,所以四面体ABCD每个面的面积相等,故正确;对于,当四面体为正四面体时,同一个顶点出发的任意两条棱的夹角均为60,此时四面体ABCD每个顶点出发的三条棱两两夹角之和等于180,故错误;对于,如图(2),G,H,I,J为各边中点,因为ACBD,所以四边形GHIJ为菱形,所以GI,HJ相互垂直平分,其他同理可得,所以连接四面体ABCD每组对棱中点的线段相互垂直平分,故正确;对于,从A点出发的三
22、条棱为AB,AC,AD,因为ACBD,所以AB,AC,AD可以构成三角形,其他同理可得,所以从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长,故正确综上所述,正确的结论为.答案:必备知能自主补缺 (一) 主干知识要记牢1简单几何体的表面积和体积(1)S直棱柱侧ch(c为底面的周长,h为高)(2)S正棱锥侧ch(c为底面周长,h为斜高)(3)S正棱台侧(cc)h(c与c分别为上、下底面周长,h为斜高)(4)圆柱、圆锥、圆台的侧面积公式S圆柱侧2rl(r为底面半径,l为母线长),S圆锥侧rl(r为底面半径,l为母线长),S圆台侧(rr)l(r,r分别为上、下底面的半径,l为母线长)
23、(5)柱、锥、台体的体积公式V柱Sh(S为底面面积,h为高),V锥Sh(S为底面面积,h为高),V台(SS)h(S,S为上、下底面面积,h为高)(6)球的表面积和体积公式S球4R2,V球R3.2两类关系的转化(1)平行关系之间的转化(2)垂直关系之间的转化3证明空间位置关系的方法已知a,b,l是直线,是平面,O是点,则(1)线线平行:cb,ab,ab,ab.(2)线面平行:a,a,a.(3)面面平行:,.(4)线线垂直:ab,ab.(5)线面垂直: l, a, a,b.(6)面面垂直:,.(二) 二级结论要用好1长方体的对角线与其共点的三条棱之间的长度关系d2a2b2c2;若长方体外接球半径为
24、R,则有(2R)2a2b2c2.针对练1(2018届高三西安八校联考)设三棱锥的三条侧棱两两互相垂直,且长度分别为2,2,4,则其外接球的表面积为()A48 B32 C20 D12解析:选B依题意,设题中的三棱锥外接球的半径为R,可将题中的三棱锥补形成一个长方体,则R 2,所以该三棱锥外接球的表面积为S4R232.2棱长为a的正四面体的内切球半径ra,外接球的半径Ra.又正四面体的高ha,故rh,Rh.针对练2正四面体ABCD的外接球半径为2,过棱AB作该球的截面,则截面面积的最小值为_解析:由题意知,面积最小的截面是以AB为直径的圆,设AB的长为a,因为正四面体外接球的半径为2,所以a2,解
25、得a,故截面面积的最小值为2.答案:(三) 易错易混要明了应用空间线面平行与垂直关系中的判定定理和性质定理时,忽视判定定理和性质定理中的条件,导致判断出错如由,l,ml,易误得出m的结论,就是因为忽视面面垂直的性质定理中m的限制条件针对练3设,是两个不同的平面,m是直线且m,则“m ”是“ ”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:选B当m时,过m的平面与可能平行也可能相交,因而m/ ;当时,内任一直线与平行,因为m,所以m.综上可知,“m ”是“ ”的必要不充分条件课时跟踪检测 A组124提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视
26、图为()解析:选B根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2(2017全国卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10 B12 C14 D16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱
27、的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为212,故选B.3(2017合肥质检)若平面截三棱锥所得截面为平行四边形,则该三棱锥中与平面平行的棱有()A0条 B1条 C2条 D0条或2条解析:选C因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面平行的棱有2条,故选C.4(2017成都模拟)已知m,n是空间中两条不同的直线,是两个不同的平面,且m,n.有下列命题:若,则m,n可能平行,也可能异面;若l,且ml,nl,则;若l,且ml,mn,则.其中真命题的个数是()A0 B1 C2 D3解析:选B对于,直线m,n可能平行,也可能
28、异面,故是真命题;对于,直线m,n同时垂直于公共棱,不能推出两个平面垂直,故是假命题;对于,当直线nl时,不能推出两个平面垂直,故是假命题故真命题的个数为1.故选B.5(2017浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1 B.3C.1 D.3解析:选A由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V12331.6(2017郑州质检)某几何体的三视图如图所示,则该几何体的体积为()A80 B160 C240 D480解析:选B如图所示,题中的几
29、何体是从直三棱柱ABCABC中截去一个三棱锥AABC后所剩余的部分,其中底面ABC是直角三角形,ACAB,AC6,AB8,BB10.因此题中的几何体的体积为10681010160,故选B.7(2017合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为()A726 B724C486 D484解析:选A由三视图知,该几何体由一个正方体的部分与一个圆柱的部分组合而成(如图所示),其表面积为162(164)2422224726,故选A.8某几何体的三视图如图所示,则其体积为()A207 B216C21636 D21618解析:选B由三视图知,该几何体是一个棱长
30、为6的正方体挖去个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V63326216,故选B.9(2017贵阳检测)三棱锥PABC的四个顶点都在体积为的球的表面上,底面ABC所在的小圆面积为16,则该三棱锥的高的最大值为()A4 B6C8 D10解析:选C依题意,设题中球的球心为O,半径为R,ABC的外接圆半径为r,则,解得R5,由r216,解得r4,又球心O到平面ABC的距离为3,因此三棱锥PABC的高的最大值为538,故选C.10(2017洛阳统考)已知三棱锥PABC的四个顶点均在某球面上,PC为该球的直径,ABC是边长为4的等边三角形,三棱锥PABC的体积为,则此三棱锥的外接球的表
31、面积为()A. B.C. D.解析:选D依题意,记三棱锥PABC的外接球的球心为O,半径为R,点P到平面ABC的距离为h,则由VPABCSABChh得h.又PC为球O的直径,因此球心O到平面ABC的距离等于h.又正ABC的外接圆半径为r,因此R2r22,所以三棱锥PABC的外接球的表面积为4R2,故选D.11某几何体的三视图如图所示,则该几何体的体积为()A. B8C. D9解析:选B依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两
32、个截后所得的部分拼接恰好形成一个底面半径为1,母线长为538的圆柱,因此题中的几何体的体积为1288,故选B.12(2018届高三湘中名校联考)已知某几何体的三视图如图所示,则该几何体的体积为()A.B32C. D.解析:选A由三视图可知, 该几何体是由底面为等腰直角三角形(腰长为4)、高为8的直三棱柱截去一个等底且高为4的三棱锥而得到的,所以该几何体的体积V448444,故选A.二、填空题13如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为_ 解析:设圆柱高为h,底面圆半径为r,周长为c,圆锥母线长为l.由图得r2,h4,则c2r4,由勾股定理得:l4,则S表r2chcl41
33、6828.答案:2814一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为_解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥设正方体的棱长为1,则三棱锥的体积为V1111,剩余部分的体积V213.所以.答案:15高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的_解析:由侧视图、俯视图知该几何体是高为2、底面积为 2(24)6的四棱锥,其体积为624.而直三棱柱的体积为2248,则该几何体的体积是原直三棱柱的体积的.答案
34、:16(2017兰州诊断考试)已知在三棱锥PABC中,VPABC,APC,BPC,PAAC,PBBC,且平面PAC平面PBC,那么三棱锥PABC外接球的体积为_解析:如图,取PC的中点O,连接AO,BO,设PC2R,则OAOBOCOPR,O是三棱锥PABC外接球的球心,易知,PBR,BCR,APC,PAAC,O为PC的中点,AOPC,又平面PAC平面PBC,且平面PAC平面PBCPC,AO平面PBC,VPABCVAPBCPBBCAORRR,解得R2,三棱锥PABC外接球的体积VR3.答案:B组能力小题保分练1(2017石家庄质检)某几何体的三视图如图所示,则该几何体的体积是()A16 B20C
35、52 D60解析:选B由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V346224320,故选B. 2(2017成都模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为()A136 B34C25 D18解析:选B由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R即为该四棱锥外接球的半径,所以2R,解得R,
36、所以该四棱锥外接球的表面积为4R234,故选B.3(2018届高三湖南五市十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为()A496 B(26)96C(44)64 D(44)96解析:选D由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S642222(44)96.4(2017石家庄质检)四棱锥PABCD的底面ABCD是边长为6的正方形,且PAPBPCPD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为()A6 B5C. D.解析:选D过点P作PH平面ABCD于点H.
37、由题知,四棱锥PABCD是正四棱锥,内切球的球心O应在四棱锥的高PH上过正四棱锥的高作组合体的轴截面如图,其中PE,PF是斜高,M为球面与侧面的一个切点设PHh,易知RtPMORtPHF,所以,即,解得h,故选D.5(2018届高三西安市八校联考)在菱形ABCD中,A60,AB,将ABD折起到PBD的位置,若二面角PBDC的大小为,则三棱锥PBCD外接球的体积为()A. B.C. D.解析:选C依题意,PBD、BCD均是边长为的等边三角形取BD的中点E,连接PE,CE,则有PEBD,CEBD,PEC是二面角PBDC的平面角,即PEC120.记三棱锥PBCD的外接球的球心为O,半径是R,PBD,
38、BCD的中心分别为M,N,连接OM,ON,MN,OE,则由OPOBODOC得,球心O在平面PBD,平面BCD上的射影分别是PBD,BCD的中心,即有OM平面PBD,OMPE,OMBD,ON平面BCD,ONNE,ONBD,因此BD平面OMN.又易证BD平面OCE,所以平面OMN平面OCE.又平面OMN与平面OCE有公共点O,因此平面OMN与平面OCE重合在四边形OMEN中,OMEONE90,MENE,MOE30,OE是四边形OMEN的外接圆的直径,OE1,ON2OE2NE2122.在RtOBN中,OB2ON2BN2ON2BE2NE222,即R,因此三棱锥PBCD的外接球的体积为R3,故选C.6(
39、2017武昌调研)在矩形ABCD中,ABBC,现将ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:存在某个位置,使得直线AC与直线BD垂直;存在某个位置,使得直线AB与直线CD垂直;存在某个位置,使得直线AD与直线BC垂直其中正确结论的序号是_解析:假设AC与BD垂直,过点A作AEBD于点E,连接CE,如图所示,则AEBD,BDAC.又AEACA,所以BD平面AEC,从而有BDCE,而在平面BCD中,CE与BD不垂直,故假设不成立,错误假设ABCD,ABAD,ADCDD,AB平面ACD,ABAC,由ABBC可知,存在这样的直角三角形BAC,使ABCD,故假设成立,正确
40、假设ADBC,DCBC,ADDCD,BC平面ADC,BCAC,即ABC为直角三角形,且AB为斜边,而AB0),由PC2,OP1,得得x,z.即点P,而E为PD的中点,E.设平面PAB的法向量为n(x1,y1,z1),(1,1,0),取y11,得n(1,1,)而,则n0,而CE平面PAB,CE平面PAB.(2)设平面PBC的法向量为m(x2,y2,z2),(0,1,0),取x21,得m(1,0,)设直线CE与平面PBC所成角为.则sin |cosm,|,故直线CE与平面PBC所成角的正弦值为.题型(三)主要考查利用空间向量探索与空间线面垂直、平行或与空间三种角有关的点所在位置、参数值的大小等问题,一般出现在解答题的最后一问.利用空间向量解决探索性问题典例感悟典例3(2017成都模拟)如图,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD的中点,点R在线段BH上,且(0)现将AED,CFD,DEF分别沿DE,DF,EF折起,使点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024沙盘制作合同
- 2024机器设备修理合同范文
- 2024建筑工程施工扩大劳务分包合同
- 2024影视剧聘用未成年演员合同
- 《微喜帖用户指南》课件
- 深圳大学《中国法律思想史》2023-2024学年第一学期期末试卷
- 深圳大学《药理学实验》2022-2023学年第一学期期末试卷
- 泵站管理员合同(2篇)
- 副高职称评审述职报告(13篇)
- 核电站拆迁协议书(2篇)
- 应力的概念讲解
- JF-2023-合同中小学校校外供餐合同示范文本
- 入团答辩-演讲模板
- 聂树斌案-演讲模板
- 只争朝夕不负韶华岗位竞聘述职报告
- 配料个人述职报告
- 农场工作制度与农民岗位职责
- 2024年山东公务员考试行测真题及解析【完美打印版】
- 茶百道选址策略分析报告
- 田赛裁判法与规则2
- 社区心肺复苏术普及
评论
0/150
提交评论