《绝对值不等式的解法---说课稿_第1页
《绝对值不等式的解法---说课稿_第2页
《绝对值不等式的解法---说课稿_第3页
《绝对值不等式的解法---说课稿_第4页
《绝对值不等式的解法---说课稿_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、绝对值不等式的解法(2)(说课稿),一、 课题介绍,二、 教材分析,三、 教法分析,四、 学法分析,五、 教学过程,七、 教学评价,六、 板书设计,一、课题介绍 本堂课选自人教版新课程标准高中数学选修4-5-不等式选讲第一讲第二节绝对值不等式的解法,第二课时内容.,二、教材分析 1、本节在教材中的地位和作用 本节课内容在高考中为选做题之一,但难度不大,学生容易上手,在高考中占有重要地位。通过前一节课学习,学生已经认识到了解绝对值不等式的基本思想是设法去掉绝对值符号,即运用绝对值的几何意义及数形结合、整体代换等思想来去掉绝对值符号,转化为不含绝对值的不等式求解.,2、目标分析 根据课程标准的要求

2、及本节的地位和作用,我从以下几 方面来确定教学目标: (1)知识与技能: 掌握|xa|xb|c和|xa|xb|c型不等式的解法。 (2)过程与方法:通过自主探究,归纳小结,讲练结合完成本节课程。培养学生“函数思想”、“数形结合”、“分类讨论”思想及分析问题,解决问题的能力。 (3)情感态度价值观:让学生感悟形与数不同的数学形态间的和谐美.,2、教学重点与难点 本节注重培养学生“数形结合”、“分类讨论”思想及解决问题分析问题的能力,因而确定重、难点为: 重点:掌握|xa|xb|c和|xa|xb|c型不等式的解法。 难点:处理含绝对值的不等式变换时的等价性.,三、教法分析 根据学生现有的认知水平,

3、本节通过师生之间的相互探讨和交流进行教学,即以探究研讨法为主,通过讲练结合法等展开教学. 结合近三年来全国卷的高考真题,加以巩固提高,培养学生分析问题、解决问题的能力、理解能力,对培育学生思维的灵活性有很大的帮助,同时能使学生养成多角度认识事物的习惯;并通过不等式变换的等价性培养思维的可容性.,四、学法分析 根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识,提高能力,我主要引导学生自己观察、分析、小结和归纳方法,采用自主探究的方法进行学习,并使学生从中体会学习的乐趣.,五、教学过程 1、复习知识,问题引

4、入 为使学生轻松的进入学习,并为后面的学习作准备,通过复习前一节课内容导入新课. 引出本节课研究的绝对值不等式 ,进而开始新课的学习.,2.探究:怎么解不等式|x-1|+|x+2|5 呢?,方法一:利用绝对值的几何意义(体现了数形结合的思想).,解绝对值不等式关键是去绝对值符号,你有什么方法解决这个问题呢?,2.解不等式|x-1|+|x+2|5,方法二:利用|x-1|=0,|x+2|=0的零点,把数轴分为三段,然后分段考虑把原不等式转化为不含绝对值符号的不等式求解(零点分段讨论法).(体现了分类讨论的思想),2.解不等式|x-1|+|x+2|5,方法三:通过构造函数,利用函数的图象(体现了函数

5、与方程的思想),方法小结,3、例题讲解 知识注重应用,当这部分知识讲解完后,我将通过两个例题来强化学生对知识的理解.,.,思考?,.,为了培养学生独立解决问题的能力,在例题讲解后,通过抽个别同学上黑板演算,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.,是不是所有这种类型的不等式都能三种方法求解呢?如何选择最恰当最简捷的方法求解?,思考? 能力提升,函数图像法,5、课时小结,|xa|xb|c和|xa|xb|c型不等式的解法 (1)利用绝对值不等式的几何意义求解 (2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想确

6、定各个绝对值符号内多项式的正、负性进而去掉绝对值符号是解题关键 (3)构造函数,结合函数的图象求解,6、作业布置 1.必做题:P20 8题,2.选做题: (1)解不等式|2x1|x4|2. (2) (2012新课标高考)已知函数f(x)|xa|x2|. (i)当a3时,求不等式f(x)3的解集; (ii)若f(x)|x4|的解集包含1,2,求a的取值范围 命题立意本题主要考查含绝对值不等式的解法,利用 绝对值三角不等式求最值的方法,六、板书设计 板书设计的好坏直接影响这节课的效果,因此它起着举足轻重的作用.为了使整个板面重点突出,层次分明,我将黑板分为四版:第一版是新课的讲解,第二、三是例题练习,第四版作副版使用,用于知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论