




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试题PAGEPAGE1天津市部分区2025届高三下学期质量调查(一)数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】因为,所以或,所以.故选:D.2.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】若,则,所以,反之,若,则,当时,没有意义,所以“”是“”的充分不必要条件.故选:A.3.下列说法中,不正确的是()A.在1,3,6,7,9,10,12,15这组数据中,第50百分位数为8B.分类变量A与B的统计量越大,说明“A与B有关系”的可信度越大C.根据具有线性相关关系的两个变量的统计数据所得的经验回归方程为,若,,,则D.两个模型中,残差平方和越大的模型拟合的效果越好【答案】D【解析】对A:因为,所以这组数据的第50百分位数为:,故A选项内容正确;对B:根据统计量意义可知,B选项内容正确;对C:根据线性回归方程必过得:,故C选项内容正确;对D:因为残差平方和越小,模型拟合的效果越好,故D选项内容错误.故选:D4.设,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】因为,且,即,又,,所以.故选:B5.已知m,n是两条直线,是一个平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则【答案】C【解析】对A:平行于同一个平面的两条直线的位置关系不确定,故A错误;对B:若,,则或,故B错误;对C:根据线面垂直的定义可知,C正确;对D:若,,则直线与平面的位置关系不确定,故D错误.故选:C6.已知是各项均为正数的等比数列,且,,成等差数列,则的值是()A. B. C.9 D.16【答案】A【解析】设正项等比数列的公比为,由,,成等差数列,可得,即,所以,解得(舍去)或,所以.故选:A7.函数在区间上有两个不同的零点,则实数的取值范围是()A. B. C. D.【答案】C【解析】因为,令,依题意与在上有两个交点,由,则,令,解得,所以在上单调递减,且,;令,解得,所以在上单调递增,且;所以,解得,即实数的取值范围是.故选:C8.已知,,为球的球面上的三个点,为的外接圆,若的面积为,,则球的表面积为()A. B. C. D.【答案】C【解析】因为的面积为,设的半径为,则,解得,又,所以等边三角形,则,所以,设球的半径为,所以,所以球的表面积.故选:C9.已知双曲线:的左、右焦点分别为,,上一点关于一条渐近线的对称点恰为右焦点.若是上的一个动点,满足,则的取值范围是()A. B. C. D.【答案】B【解析】设与渐近线的交点为,则为的中点,且,又为的中点,所以,即,所以,要使,则点在以为圆心,为半径的圆的内部,根据对称性可知,即的取值范围是.故选:B二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i是虚数单位,复数________________.【答案】【解析】故答案为11.在的展开式中,常数项为__________.(用数字作答)【答案】【解析】由的展开式的通项为,令,,则,即在的展开式中,常数项为,故答案为:.12.已知圆的方程为.当圆的面积最小时,直线与圆相切,则的值为_______.【答案】【解析】依题意,圆的方程为,所以,所以圆心为,半径为,所以当时,半径最小,圆的面积最小,且半径的最小值为,此时圆心到直线的距离为或(舍去).故答案为:13.某中学组建了,,,,五个不同的社团,旨在培养学生的兴趣爱好,要求每个学生必须且只能参加一个社团.假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的,且结果互不影响.记事件为“甲、乙、丙三名学生中恰有两人参加社团”,则_______;若甲、乙、丙三名学生中有两人参加社团,则恰巧甲参加社团的概率为________.【答案】①.②.【解析】依题意甲、乙、丙三名学生选择社团的可能结果有个,若甲、乙、丙三名学生中恰有两人参加社团,则有种选择,所以;甲、乙、丙三名学生中有两人参加社团,则恰巧甲参加社团,则有种选择,所以甲、乙、丙三名学生中有两人参加社团,则恰巧甲参加社团的概率.故答案为:;14.在边长为的菱形中,,且,,则_______;若为线段上的动点,则的最小值为_______.【答案】①.②.【解析】因为,所以,所以,又且、不共线,所以,所以;如图建立平面直角坐标系,则,,,所以,由,所以,所以,因为为线段上的动点,设,所以,所以,所以,所以,所以当时取得最小值,且最小值为.故答案为:;15.已知,函数若关于的方程,恰有2个互异的实数解,则的取值范围是_______.【答案】【解析】由,fx可得当时,即,所以;当时,,所以,令,,则m'x=2-所以在上单调递增,所以mx>m1所以,所以a=x+1,x≤1令gx=x+1,x≤12①当时,,则在上单调递增,且;②当时,则,令,则,所以当时,则在上单调递增,当时,则在上单调递减,所以,所以恒成立,所以恒成立,所以在上单调递减,又,因为,所以g12=且当时,,所以;所以,即的取值范围是.故答案为:三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在中,角A,B,C所对的边分别为a,b,c.已知,,.(1)求的值;(2)求的值;(3)求的值.解:(1)由余弦定理可得,即,解得或(舍去).(2)由正弦定理,所以;(3)由余弦定理,所以,,所以.17.如图,在四棱锥中,底面,,,,,,为棱的中点.(1)求证:平面;(2)求平面与平面夹角的余弦值;(3)求点P到平面的距离.(1)证明:因为底面,底面,所以,又因为平面,所以平面,即为平面的一个法向量,如图以点为原点,,,分别为轴,轴,轴,建立空间直角坐标系,可得,,,,,由为棱的中点,得,向量,,故,又平面,所以平面;(2)解:因为,设平面的法向量为,则,取,又平面的法向量,设平面与平面夹角为,则,所以平面与平面夹角的余弦值为;(3)因为,所以点P到平面的距离,即点P到平面的距离为.18.已知椭圆的左焦点在抛物线的准线上,且椭圆的短轴长为.(1)求椭圆的方程;(2)已知过原点的直线与椭圆相交于M,N两点,若直线:上存在点Q,使得是以为底边的等腰直角三角形,求直线的方程.解:(1)抛物线的准线方程为,椭圆的左焦点为,即,椭圆的短轴长为,,即,,椭圆的方程为;(2)设,,当直线斜率不存在时,:,此时M,N分别为椭圆的上、下顶点,不妨设,,要使是以为底边的等腰直角三角形,则,,,,不合题意;当直线的斜率为时,:,此时M,N分别为椭圆的左、右顶点,不妨设,,要使是以为底边的等腰直角三角形,则,,,,满足题意;当直线的斜率存在且不为时,设:,由,得,,,,设的垂直平分线方程为,由,得,是以为底边的等腰直角三角形,,,化简得,,或(舍),:,综上,直线的方程为或.19.已知为等差数列,其前项和为,满足,且.(1)求的通项公式;(2)设数列满足其中.(i)记,.证明:是等差数列;(ii)求.解:(1)设等差数列的公差为,由,且,所以,解得,所以;(2)(i)由(1)可知,又其中,所以其中,当为奇数时,,所以,所以,则,所以是以为首项,为公差的等差数列;(ii)令,而,,所以.20.已知函数,,其中.(1)求曲线在点处的切线方程;(2)是否存在,使得函数在区间上的最小值为?若存在,求出的值;若不存在,请说明理由;(3)设是函数的极小值点,且,证明:.(1)解:因为,所以,则,而,则,所以在点处的切线方程是.(2)解:由题意,定义域为,则,因为,所以当时,所以在上单调递减,当时,所以在上单调递增;若,即时在上单调递增,则,不符合题意;若,即时,则在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年芜湖市税务系统遴选面试真题带答案详解
- 2025年贵州省贞丰县事业单位公开招聘辅警考试题带答案分析
- 癌症病防治课件
- 巴黎圣母院课件
- 工程设备安装课件
- 二零二五年度户外拓展训练场地租赁合同
- 企业形象设计项目委托代理合同
- 餐饮品牌加盟合作框架协议
- 高档家居装修设计合作协议
- 疫情健康防护课课件
- 2025年春季XX中学团委工作总结:青春筑梦践初心笃行不怠踏征程
- 工业设计基础 1.1.1 工业设计基础课程简介
- 电焊证培训 考试试题及答案
- DB4201T 039-2015 汽车旅游露营营地建设规范
- 气切患者护理课件
- DB64∕T 2133-2025 骨干渠道安全巡护检查技术导则
- 建立并优化医院的药品管理体系
- 肿瘤全程康复管理制度
- 2025至2030中国护眼灯行业发展趋势预判及市场前景预测报告
- 青春期生理讲课件
- 2025年人教版小学一年级下册数学期末易错题测试试题(含答案和解析)
评论
0/150
提交评论