新北师大版九年级数学用树状图或表格求概率学习资料_第1页
新北师大版九年级数学用树状图或表格求概率学习资料_第2页
新北师大版九年级数学用树状图或表格求概率学习资料_第3页
新北师大版九年级数学用树状图或表格求概率学习资料_第4页
新北师大版九年级数学用树状图或表格求概率学习资料_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.3用树状图或表格求概率

用画树状图和列表的方法求概率时应注意各种结果出现的可能性相同.利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,较方便地求出某些事件发生的概率.(1)树状图如下:“配紫色”游戏1开始红白黄蓝绿(红,黄)(红,蓝)(红,绿)(白,黄)(白,蓝)(白,绿)黄蓝绿(2)游戏者获胜的概率是.(1)表格如下:(2)游戏者获胜的概率是.黄蓝绿红(红,黄)(红,蓝)(红,绿)白(白,黄)(白,蓝)(白,绿)“配紫色”游戏1120°红红蓝蓝用如图所示的转盘进行“配紫色”游戏.小颖制作了下图,并据此求出游戏者获胜的概率是.“配紫色”游戏2对此你有什么评论?开始红蓝红蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)A盘B盘小亮则先把A盘的红色区域等分成2份,分别记作“红1”,“红2”,然后制作了下表,据此求出游戏者获胜的概率也是.120°红1红蓝蓝红2你认为谁做得对?说说你的理由.A盘B盘“配紫色”游戏2小颖的做法不正确.因为A盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.小亮的做法正确,他的方法是解决这类问题的一种常用方法.【结论】用树状图和列表的方法求概率时应注意些什么?议一议各种情况出现的可能性相同

一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.典型例题把两个红球记为红1、红2;两个白球记为白1,白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)=4/25【例题】如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并且自由转动图中的转盘(转盘被分成面积相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.123【解析】每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有1种:(1,1),因此游戏者获胜的概率为.112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)你能用树状图解答吗?试试看!分层提高1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?1.(菏泽·中考)某医院决定抽调甲、乙、丙、丁4名医护人员参加抗震救灾,先随机地从这4人中抽取2人作为第一批救灾医护人员,那么丁医护人员被抽到作为第一批救灾医护人员的概率是

.答案:2.(潼南·中考)“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1,2,3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1,2,3,4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率.(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.【解析】

(1)方法一:列表法(2)公平.理由为:P(和为偶数)∵P(和为奇数)=P(和为偶数),∴该方法公平.方法二:树状图法(1)P(和为奇数)开始一班二班3.(常德·中考)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其他完全相同的A,B,C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳舞;如果摸到的是C球,则表演朗诵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论