




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter7
DemandForecasting
inaSupplyChainSupplyChainManagement
(3rdEdition)
7-1OutlineTheroleofforecastinginasupplychainCharacteristicsofforecastsComponentsofforecastsandforecastingmethodsBasicapproachtodemandforecastingTimeseriesforecastingmethodsMeasuresofforecasterrorForecastingdemandatTahoeSaltForecastinginpractice2RoleofForecasting
inaSupplyChainThebasisforallstrategicandplanningdecisionsinasupplychainUsedforbothpushandpullprocessesExamples:Production:scheduling,inventory,aggregateplanningMarketing:salesforceallocation,promotions,newproductionintroductionFinance:plant/equipmentinvestment,budgetaryplanningPersonnel:workforceplanning,hiring,layoffsAllofthesedecisionsareinterrelated3CharacteristicsofForecastsForecastsarealwayswrong.Shouldincludeexpectedvalueandmeasureoferror.Long-termforecastsarelessaccuratethanshort-termforecasts(forecasthorizonisimportant)Aggregateforecastsaremoreaccuratethandisaggregateforecasts4ForecastingMethodsQualitative:primarilysubjective;relyonjudgmentandopinionTimeSeries:usehistoricaldemandonlyStaticAdaptiveCausal:usetherelationshipbetweendemandandsomeotherfactortodevelopforecastSimulationImitateconsumerchoicesthatgiverisetodemandCancombinetimeseriesandcausalmethods5ComponentsofanObservationObserveddemand(O)=Systematiccomponent(S)+Randomcomponent(R)Level(currentdeseasonalizeddemand)Trend(growthordeclineindemand)Seasonality(predictableseasonalfluctuation)Systematiccomponent:ExpectedvalueofdemandRandomcomponent:Thepartoftheforecastthatdeviates
fromthesystematiccomponentForecasterror:differencebetweenforecastandactualdemand6TimeSeriesForecastingForecastdemandforthenextfourquarters.7TimeSeriesForecasting8ForecastingMethodsStaticAdaptiveMovingaverageSimpleexponentialsmoothingHolt’smodel(withtrend)Winter’smodel(withtrendandseasonality)9BasicApproachto
DemandForecastingUnderstandtheobjectivesofforecastingIntegratedemandplanningandforecastingIdentifymajorfactorsthatinfluencethedemandforecastUnderstandandidentifycustomersegmentsDeterminetheappropriateforecastingtechniqueEstablishperformanceanderrormeasuresfortheforecast10TimeSeries
ForecastingMethodsGoalistopredictsystematiccomponentofdemandMultiplicative:(level)(trend)(seasonalfactor)Additive:level+trend+seasonalfactorMixed:(level+trend)(seasonalfactor)StaticmethodsAdaptiveforecasting11StaticMethodsAssumeamixedmodel:Systematiccomponent=(level+trend)(seasonalfactor)Ft+l=[L+(t+l)T]St+l=forecastinperiodtfordemandinperiodt+lL=estimateoflevelforperiod0T=estimateoftrendSt=estimateofseasonalfactorforperiodtDt=actualdemandinperiodtFt=forecastofdemandinperiodt12StaticMethodsEstimatinglevelandtrendEstimatingseasonalfactors13EstimatingLevelandTrendBeforeestimatinglevelandtrend,demanddatamustbedeseasonalizedDeseasonalizeddemand=demandthatwouldhavebeenobservedintheabsenceofseasonalfluctuationsPeriodicity(p)thenumberofperiodsafterwhichtheseasonalcyclerepeatsitselffordemandatTahoeSalt(Table7.1,Figure7.1)p=414TimeSeriesForecasting
(Table7.1)Forecastdemandforthenextfourquarters.15TimeSeriesForecasting
(Figure7.1)16EstimatingLevelandTrendBeforeestimatinglevelandtrend,demanddatamustbedeseasonalizedDeseasonalizeddemand=demandthatwouldhavebeenobservedintheabsenceofseasonalfluctuationsPeriodicity(p)thenumberofperiodsafterwhichtheseasonalcyclerepeatsitselffordemandatTahoeSalt(Table7.1,Figure7.1)p=417DeseasonalizingDemand [Dt-(p/2)+Dt+(p/2)+S2Di]/2pforpevenDt= (sumisfromi=t+1-(p/2)tot+1+(p/2))
SDi/pforpodd
(sumisfromi=t-(p/2)tot+(p/2)),p/2truncatedtolowerinteger18DeseasonalizingDemandFortheexample,p=4isevenFort=3:D3={D1+D5+Sum(i=2to4)[2Di]}/8={8000+10000+[(2)(13000)+(2)(23000)+(2)(34000)]}/8=19750D4={D2+D6+Sum(i=3to5)[2Di]}/8={13000+18000+[(2)(23000)+(2)(34000)+(2)(10000)]/8=2062519DeseasonalizingDemandThenincludetrendDt=L+tTwhereDt=deseasonalizeddemandinperiodtL=level(deseasonalizeddemandatperiod0)T=trend(rateofgrowthofdeseasonalizeddemand)Trendisdeterminedbylinearregressionusingdeseasonalizeddemandasthedependentvariableandperiodastheindependentvariable(canbedoneinExcel)Intheexample,L=18,439andT=52420TimeSeriesofDemand
(Figure7.3)21EstimatingSeasonalFactors Usethepreviousequationtocalculatedeseasonalizeddemandforeachperiod St=Dt/Dt=seasonalfactorforperiodt Intheexample, D2=18439+(524)(2)=19487D2=13000 S2=13000/19487=0.67 Theseasonalfactorsfortheotherperiodsarecalculatedinthesamemanner22EstimatingSeasonalFactors
(Fig.7.4)23EstimatingSeasonalFactorsTheoverallseasonalfactorfora“season”isthenobtainedbyaveragingallofthefactorsfora“season”Iftherearerseasonalcycles,forallperiodsoftheformpt+i,1<i<p,theseasonalfactorforseasoniisSi=[Sum(j=0tor-1)
Sjp+i]/r
Intheexample,thereare3seasonalcyclesinthedataandp=4,soS1=(0.42+0.47+0.52)/3=0.47S2=(0.67+0.83+0.55)/3=0.68S3=(1.15+1.04+1.32)/3=1.17S4=(1.66+1.68+1.66)/3=1.6724EstimatingtheForecastUsingtheoriginalequation,wecanforecastthenextfourperiodsofdemand:F13=(L+13T)S1=[18439+(13)(524)](0.47)=11868F14=(L+14T)S2=[18439+(14)(524)](0.68)=17527F15=(L+15T)S3=[18439+(15)(524)](1.17)=30770F16=(L+16T)S4=[18439+(16)(524)](1.67)=4479425AdaptiveForecastingTheestimatesoflevel,trend,andseasonalityareadjustedaftereachdemandobservationGeneralstepsinadaptiveforecastingMovingaverageSimpleexponentialsmoothingTrend-correctedexponentialsmoothing(Holt’smodel)Trend-andseasonality-correctedexponentialsmoothing(Winter’smodel)26BasicFormulafor
AdaptiveForecastingFt+1=(Lt+lT)St+1=forecastforperiodt+linperiodt
Lt=Estimateoflevelattheendofperiodt
Tt=Estimateoftrendattheendofperiodt
St=Estimateofseasonalfactorforperiodt
Ft=Forecastofdemandforperiodt(madeperiodt-1orearlier)Dt=Actualdemandobservedinperiodt
Et=Forecasterrorinperiodt
At=Absolutedeviationforperiodt=|Et|MAD=MeanAbsoluteDeviation=averagevalueofAt
27GeneralStepsin
AdaptiveForecastingInitialize:Computeinitialestimatesoflevel(L0),trend(T0),andseasonalfactors(S1,…,Sp).Thisisdoneasinstaticforecasting.Forecast:Forecastdemandforperiodt+1usingthegeneralequationEstimateerror:ComputeerrorEt+1=Ft+1-Dt+1
Modifyestimates:Modifytheestimatesoflevel(Lt+1),trend(Tt+1),andseasonalfactor(St+p+1),giventheerrorEt+1intheforecastRepeatsteps2,3,and4foreachsubsequentperiod28MovingAverageUsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand=levelThelevelinperiodtistheaveragedemandoverthelastNperiods(theN-periodmovingaverage)Currentforecastforallfutureperiodsisthesameandisbasedonthecurrentestimateofthelevel Lt=(Dt+Dt-1+…+Dt-N+1)/N Ft+1=LtandFt+n=Lt
Afterobservingthedemandforperiodt+1,revisetheestimatesasfollows: Lt+1=(Dt+1+Dt+…+Dt-N+2)/N Ft+2=Lt+1
29MovingAverageExampleFromTahoeSaltexample(Table7.1)Attheendofperiod4,whatistheforecastdemandforperiods5through8usinga4-periodmovingaverage?L4=(D4+D3+D2+D1)/4=(34000+23000+13000+8000)/4=19500F5=19500=F6=F7=F8Observedemandinperiod5tobeD5=10000Forecasterrorinperiod5,E5=F5-D5=19500-10000=9500Reviseestimateoflevelinperiod5:L5=(D5+D4+D3+D2)/4=(10000+34000+23000+13000)/4=20000F6=L5=2000030SimpleExponentialSmoothingUsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand=levelInitialestimateoflevel,L0,assumedtobetheaverageofallhistoricaldata L0=[Sum(i=1ton)Di]/n Currentforecastforallfutureperiodsisequaltothecurrentestimateofthelevelandisgivenasfollows: Ft+1=LtandFt+n=Lt
AfterobservingdemandDt+1,revisetheestimateofthelevel: Lt+1=aDt+1+(1-a)Lt
Lt+1=Sum(n=0tot+1)[a(1-a)nDt+1-n]31SimpleExponentialSmoothingExampleFromTahoeSaltdata,forecastdemandforperiod1usingexponentialsmoothingL0=averageofall12periodsofdata=Sum(i=1to12)[Di]/12=22083F1=L0=22083Observeddemandforperiod1=D1=8000Forecasterrorforperiod1,E1,isasfollows:E1=F1-D1=22083-8000=14083Assuminga=0.1,revisedestimateoflevelforperiod1:L1=aD1+(1-a)L0=(0.1)(8000)+(0.9)(22083)=20675F2=L1=20675Notethattheestimateoflevelforperiod1islowerthaninperiod032Trend-CorrectedExponentialSmoothing(Holt’sModel)AppropriatewhenthedemandisassumedtohavealevelandtrendinthesystematiccomponentofdemandbutnoseasonalityObtaininitialestimateoflevelandtrendbyrunningalinearregressionofthefollowingform:
Dt=at+b T0=a L0=b Inperiodt,theforecastforfutureperiodsisexpressedasfollows: Ft+1=Lt+Tt
Ft+n=Lt+nTt
33Trend-CorrectedExponentialSmoothing(Holt’sModel)Afterobservingdemandforperiodt,revisetheestimatesforlevelandtrendasfollows:Lt+1=aDt+1+(1-a)(Lt+Tt)Tt+1=b(Lt+1-Lt)+(1-b)Tt
a=smoothingconstantforlevelb=smoothingconstantfortrendExample:TahoeSaltdemanddata.Forecastdemandforperiod1usingHolt’smodel(trendcorrectedexponentialsmoothing)Usinglinearregression,L0=12015(linearintercept)T0=1549(linearslope)34Holt’sModelExample(continued)Forecastforperiod1:F1=L0+T0=12015+1549=13564Observeddemandforperiod1=D1=8000E1=F1-D1=13564-8000=5564Assumea=0.1,b=0.2L1=aD1+(1-a)(L0+T0)=(0.1)(8000)+(0.9)(13564)=13008T1=b(L1-L0)+(1-b)T0=(0.2)(13008-12015)+(0.8)(1549)=1438F2=L1+T1=13008+1438=14446F5=L1+4T1=13008+(4)(1438)=1876035Trend-andSeasonality-CorrectedExponentialSmoothingAppropriatewhenthesystematiccomponentofdemandisassumedtohavealevel,trend,andseasonalfactorSystematiccomponent=(level+trend)(seasonalfactor)AssumeperiodicitypObtaininitialestimatesoflevel(L0),trend(T0),seasonalfactors(S1,…,Sp)usingprocedureforstaticforecastingInperiodt,theforecastforfutureperiodsisgivenby: Ft+1=(Lt+Tt)(St+1)andFt+n=(Lt+nTt)St+n
36Trend-andSeasonality-CorrectedExponentialSmoothing(continued)Afterobservingdemandforperiodt+1,reviseestimatesforlevel,trend,andseasonalfactorsasfollows:Lt+1=a(Dt+1/St+1)+(1-a)(Lt+Tt)Tt+1=b(Lt+1-Lt)+(1-b)TtSt+p+1=g(Dt+1/Lt+1)+(1-g)St+1
a=smoothingconstantforlevelb=smoothingconstantfortrendg=smoothingconstantforseasonalfactorExample:TahoeSaltdata.Forecastdemandforperiod1usingWinter’smodel.Initialestimatesoflevel,trend,andseasonalfactorsareobtainedasinthestaticforecastingcase37Trend-andSeasonality-CorrectedExponentialSmoothingExample(continued)L0=18439T0=524 S1=0.47,S2=0.68,S3=1.17,S4=1.67F1=(L0+T0)S1=(18439+524)(0.47)=8913Theobserveddemandforperiod1=D1=8000Forecasterrorforperiod1=E1=F1-D1=8913-8000=913Assumea=0.1,b=0.2,g=0.1;reviseestimatesforlevelandtrendforperiod1andforseasonalfactorforperiod5L1=a(D1/S1)+(1-a)(L0+T0)=(0.1)(8000/0.47)+(0.9)(18439+524)=18769T1=b(L1-L0)+(1-b)T0=(0.2)(18769-18439)+(0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025水利枢纽建设合同示范文本
- 2025年广东省水果种植订购合同官方标准范本
- 2025年合同担保制度的效力如何
- 个人警示教育心得体会心得体会
- 教师助理评职称个人述职报告范文
- 教师诚信考试以案促改警示教育心得体会
- 2025年煤炭矿山职业技能鉴定考试-矿井轨道工历年参考题库含答案解析(5卷100道集合-单选题)
- 2025年煤炭矿山职业技能鉴定考试-煤矿矿井主扇风机操作工历年参考题库含答案解析(5卷100道集合-单选题)
- 酒店管理册试题及答案
- 2025年灭火救援专业士兵职业技能鉴定高级技师技能库(官方)-判断题历年参考试题库答案解析(5卷100道集合-单选题)
- 《橡胶沥青应力吸收层应用技术指南》
- 2025年广西林业局直属事业单位招聘考试笔试高频重点提升(共500题)附带答案详解
- 2025年中国华能集团公司招聘笔试参考题库含答案解析
- 2025年浙江广电集团招聘笔试参考题库含答案解析
- 《ECMO安装及预充》课件
- 基因检测经销合同协议书
- 2024年河北省廊坊市“硕博”招聘42人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 2023第五届全国应急管理普法知识竞赛题库及答案(1035题)
- 物业个人充电桩免责协议书
- DZ∕T 0204-2022 矿产地质勘查规范 稀土(正式版)
- 2024广西专业技术人员继续教育公需科目参考答案(99分)
评论
0/150
提交评论