




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
装订线装订线PAGE2第1页,共3页江西财经大学《ip设计》
2023-2024学年第二学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的图像修复旨在恢复图像中缺失或损坏的部分。假设一张珍贵的老照片有部分区域损坏,需要进行修复以还原其完整的内容。以下哪种图像修复方法在处理这种情况时能够生成更自然和逼真的结果?()A.基于扩散的图像修复B.基于纹理合成的图像修复C.基于深度学习的图像修复D.基于样例的图像修复2、在计算机视觉的目标跟踪任务中,持续跟踪视频中的特定目标。假设要跟踪一个在人群中行走的人,以下关于目标跟踪方法的描述,哪一项是不正确的?()A.基于滤波的方法,如卡尔曼滤波和粒子滤波,可以预测目标的位置和状态B.基于深度学习的方法能够学习目标的外观特征,提高跟踪的准确性和鲁棒性C.目标跟踪过程中,目标的外观变化、遮挡和背景干扰等因素不会对跟踪结果产生影响D.结合多种特征和算法的融合跟踪方法,可以综合利用不同方法的优势,提高跟踪性能3、计算机视觉在安防监控领域有重要应用。假设要通过摄像头监控一个公共场所,以下关于计算机视觉在安防监控中的应用描述,哪一项是不正确的?()A.可以实时检测异常行为,如人群聚集、奔跑等B.能够对人员进行身份识别和认证C.计算机视觉系统可以独立完成所有的安防监控任务,不需要人工干预D.与其他安防设备和系统集成,提高整体的安全性和防范能力4、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定的目标。以下关于目标跟踪的叙述,不正确的是()A.目标跟踪可以基于特征匹配、滤波算法或深度学习方法来实现B.目标的外观变化、遮挡和背景干扰等因素会给目标跟踪带来挑战C.目标跟踪在智能监控、人机交互和自动驾驶等领域有着广泛的应用D.目标跟踪算法能够在任何情况下都准确地跟踪目标,不受复杂环境的影响5、在计算机视觉的图像配准任务中,假设要将两张拍摄角度和时间不同的同一物体的图像进行精确对齐。这两张图像可能存在缩放、旋转和平移等差异。以下哪种配准方法可能更适合处理这种情况?()A.基于特征点匹配的方法,如SIFT特征B.直接将两张图像叠加,不进行任何配准操作C.基于图像灰度值的配准方法,计算灰度差异D.随机选择图像中的点进行匹配6、在一个基于计算机视觉的无人驾驶系统中,需要对道路场景进行理解和预测,例如判断前方是否有行人横穿马路。为了实现准确的场景理解和预测,以下哪种技术可能是关键?()A.语义分割B.实例分割C.场景图生成D.以上都是7、计算机视觉在虚拟现实(VR)和增强现实(AR)中的应用可以提供更沉浸式的体验。假设要在VR环境中实时跟踪用户的头部运动并相应地更新场景,以下关于VR/AR计算机视觉应用的描述,正确的是:()A.简单的基于传感器的跟踪方法能够满足VR中高精度的头部运动跟踪需求B.计算机视觉在VR/AR中的应用主要关注图像生成,而不是跟踪和定位C.结合视觉特征提取和深度学习的头部运动跟踪算法可以实现低延迟和高精度的跟踪D.VR/AR环境中的光照条件和物体遮挡对计算机视觉算法的性能没有影响8、假设我们要开发一个计算机视觉系统,用于检测生产线上产品的表面缺陷。由于产品的种类繁多、缺陷类型复杂,以下哪种方法可能需要更多的计算资源和时间来训练模型?()A.基于传统机器学习的方法B.基于浅层神经网络的方法C.基于深度学习的方法D.基于模板匹配的方法9、在计算机视觉中,图像分类是一项重要任务。假设我们要对大量的动物图片进行分类,将其分为猫、狗、鸟等类别。以下关于图像分类方法的描述,哪一项是不准确的?()A.基于深度学习的卷积神经网络(CNN)在图像分类任务中表现出色,能够自动学习图像的特征B.传统的机器学习方法如支持向量机(SVM)在处理大规模图像数据时,性能通常不如深度学习方法C.图像分类只需要考虑图像的颜色和形状等低层次特征,高层语义信息对分类结果影响不大D.为了提高分类准确率,可以使用数据增强技术,如旋转、翻转、裁剪等操作来扩充数据集10、在计算机视觉的图像修复任务中,假设要填补图像中缺失或损坏的部分。以下哪种方法可能更有效地恢复图像的完整性和真实性?()A.基于扩散的修复方法B.基于深度学习的图像修复模型,如ContextEncoderC.用固定的图案或颜色填充缺失部分D.不进行修复,保留图像的缺失部分11、计算机视觉在体育赛事分析中的应用可以提供更多的数据和见解。假设要分析一场足球比赛中球员的跑动轨迹和动作。以下关于计算机视觉在体育赛事中的描述,哪一项是不准确的?()A.可以通过对视频的分析,自动跟踪球员的位置和运动轨迹B.能够对球员的动作进行分类,如传球、射门和防守C.计算机视觉在体育赛事分析中的结果可以直接作为裁判的判罚依据,无需人工复查D.可以结合多摄像头的信息,获取更全面和准确的比赛数据12、在计算机视觉的图像增强处理中,目的是改善图像的质量和可读性。假设我们要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,哪一项是不正确的?()A.直方图均衡化可以通过调整图像的灰度分布,增强图像的对比度B.基于Retinex理论的方法可以分离图像的光照和反射成分,从而改善图像的视觉效果C.图像增强算法可以在不增加噪声的情况下,显著提高图像的亮度和清晰度D.不同的图像增强方法适用于不同类型的图像,需要根据具体情况选择合适的方法13、在计算机视觉中,目标检测是一项重要任务。假设我们要开发一个能够在交通场景中检测车辆的系统。如果图像中的车辆存在多种姿态、大小和光照条件的变化,以下哪种目标检测算法可能更适合应对这种复杂情况?()A.基于传统特征的检测算法,如HOG特征结合SVM分类器B.基于深度学习的FasterR-CNN算法C.基于模板匹配的检测算法D.基于颜色特征的检测算法14、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征15、当进行图像的风格迁移任务时,假设要将一张照片的风格转换为著名绘画的风格,同时保留照片的内容结构。以下哪种方法在实现这一目标时可能更有效?()A.使用基于卷积神经网络的风格迁移算法,如Gatys等人提出的方法B.对图像进行简单的色彩变换和滤镜处理C.随机改变图像的像素值来模拟风格迁移D.只对图像的边缘进行处理,忽略内部区域二、简答题(本大题共4个小题,共20分)1、(本题5分)计算机视觉中如何进行版权服务中的作品鉴定?2、(本题5分)解释计算机视觉在数字出版中的作用。3、(本题5分)计算机视觉中如何应用循环神经网络处理序列图像?4、(本题5分)计算机视觉中如何对古代建筑进行数字化建模?三、应用题(本大题共5个小题,共25分)1、(本题5分)开发一个能够识别不同种类鼬科动物的程序。2、(本题5分)对舞蹈比赛中的舞蹈音乐选择和与舞蹈动作的配合度进行评估3、(本题5分)运用图像识别技术,检测图书馆书架上书籍的摆放顺序。4、(本题5分)利用图像识别算法,对超市货架上的商品进行库存管理和盘点。5、(本题5分)运用图像分类技术,对不同种类的牙雕进行分类。四、分析题(本大题共4个小题,共40分)1、(本题10分)选取某运动品牌的运动俱乐部会员卡设计,分析其如何运用视觉元素展示会员卡的权益和吸引会员加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年办公人员试题答案及解析
- 2025年药店gsp系统培训试题及答案
- 2025年车辆装备保障专业测试题及答案
- 2025年中国古典音乐试题及答案
- 2025年金属学热处理中级工试题及答案
- 机械革命协议书
- 机车比赛协议书
- 村民与村协议书
- 林地征占协议书
- 果树互换协议书
- GB 20664-2006有色金属矿产品的天然放射性限值
- 小学数学课堂教学有效性的课件
- 国家排污许可系统填报培训课件
- 赣州市在建项目关键岗位人员变更备案表(样表)
- 北理工概率与数理统计-往年考题-课件
- 电梯配件报价单(空表)
- 慢性萎缩性胃炎概述课件
- 露天煤矿生产安全安全事故应急预案
- 高速铁路涵洞工程顶进施工施工工艺
- 微生物细胞的破碎表现和测定
- 四川省房屋建筑工程和市政基础设施工程竣工验收报告.docx四川省房屋建筑工程和市政基础设施工程竣工验收报告
评论
0/150
提交评论