




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学下册第十九章-一次函数难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,一次函数是()A.y=-4x+5 B.y=x(2x-3) C.y=ax2+bx+c D.y=2、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0 B.k<2 C.k>2 D.k≠23、一次函数y=﹣x﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是()A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>5、函数y=中,自变量x的取值范围是()A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣36、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:x…﹣2﹣1012…y1…12345…x…﹣2﹣1012…y2…52﹣1﹣4﹣7…则关于x的不等式kx+b>mx+n的解集是()A.x>0 B.x<0 C.x<﹣1 D.x>﹣17、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是()A.①②④ B.①②③ C.①③④ D.②③④8、如图,一次函数(为常数,且)的图像经过点,则关于的不等式的解集为()A. B. C. D.9、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为()A. B. C. D.10、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是().A.-2 B.2C.4 D.﹣4第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,直线与轴、轴分别交于、两点,以为边在第二象限内作正方形,在轴上有一个动点,当的周长最小的时候,点的坐标是______.2、一次函数y=kx+b(k≠0)中两个变量x、y的部分对应值如下表所示:x…-2-1012…y…852-1-4…那么关于x的不等式kx+b≥-1的解集是________.3、甲、乙两人相约周末登山,甲、乙两人距地面的高度y/m与登山时间x/min之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)b=_______m;(2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则登山_______min时,他们俩距离地面的高度差为70m.4、一次函数y=kx+b的图象如图所示,当x满足_____时,y≥1.5、如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是_____.三、解答题(5小题,每小题10分,共计50分)1、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范用.(3)直接写出两车相距5千米时x的值.2、如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.3、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象可由函数y=x的图象平移得到,且经过点(﹣2,0).(1)求一次函数y=kx+b的表达式;(2)将一次函数y=kx+b在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示).①根据图象,当x>﹣2时,y随x的增大而;②请再写出两条该函数图象的性质.4、已知y﹣1与x+3成正比例且x=﹣1时,y=5(1)求y与x之间的函数关系式;(2)若点(m,3)在这个函数的图象上,求m的值.5、阅读下列一段文字,然后回答问题.已知在平面内两点P1x1,y1、P2(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为-1,试求A、B两点之间的距离;(2)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.---------参考答案-----------一、单选题1、A【解析】【分析】由题意直接根据一次函数的定义逐个进行分析判断即可.【详解】解:A.y=-4x+5是一次函数,故本选项符合题意;B.y=x(2x-3)=2x2-3x是二次函数,不是一次函数,故本选项不符合题意;C.y=ax2+bx+c,当a≠0时,y=ax2+bx+c是二次函数,不是一次函数,故本选项不符合题意;D.y=是反比例函数,故本选项不符合题意;故选:A.【点睛】本题考查一次函数的定义,熟练掌握一次函数的定义是解答此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数叫一次函数.2、C【解析】【分析】由题意,随的增大而减小,可得自变量系数小于0,进而可得的范围.【详解】解:∵关于的一次函数的函数值随着的增大而减小,,.故选C.【点睛】本题主要考查了一次函数的增减性问题,解题的关键是:掌握在中,,随的增大而增大,,随的增大而减小.3、A【解析】【分析】因为k=﹣1<0,b=﹣2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣x﹣2的图象不经过第一象限.【详解】解:∵一次函数y=﹣x﹣2中k=﹣1<0,∴图象经过第二、四象限;又∵b=﹣2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣x﹣2的图象不经过第一象限.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系;k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4、C【解析】【分析】利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.【详解】解:函数值y随自变量x的增大而减小,那么1+2m<0,解得m<.故选:C.【点睛】本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.5、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.6、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A.【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.8、A【解析】【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可.【详解】解:∵当x=-3时,kx+b=2,且y随x的增大而减小,∴不等式的解集,故选A.【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.9、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,,∴△ABO≌△CAE(AAS),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.10、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.二、填空题1、(0,)【解析】【分析】把x=0和y=0分别代入y=x+1,求出A,B两点的坐标,过D作DE垂直于x轴,证△DEA≌△AOB,证出OA=DE,AE=OB,即可求出D的坐标;先作出D关于y轴的对称点D′,连接CD′,CD′与y轴交于点M,则MD′=MD,求出D′的坐标,进而求出CD′的解析式,即可求解.【详解】解:y=x+1,当x=0时,y=1,当y=0时,x=-2,∴点A的坐标为(-2,0)、B的坐标为(0,1),OA=2,OB=1,由勾股定理得:AB=,过D作DE垂直于x轴,∵四边形ABCD是正方形,∴∠DEA=∠DAB=∠AOB=90°,AD=AB=CD=,∴∠DAE+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAE=∠ABO,在△DEA与△AOB中,,∴△DEA≌△AOB(AAS),∴OA=DE=2,AE=OB=1,∴OE=3,所以点D的坐标为(-3,2),同理:点C的坐标为(-1,3),作D关于y轴的对称点D′,连接CD′,CD′与y轴交于点M,∴MD′=MD,MD′+MC=MD+MC,此时MD′+MC取最小值,∵点D(-3,2)关于y轴的对称点D′坐标为(3,2),设直线CD′解析式为y=kx+b,把C(-1,3),D′(3,2)代入得:,解得:,∴直线CD′解析式为y=x+,令x=0,得到y=,则M坐标为(0,).故答案为:(0,).【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数的性质,能求与x轴y轴的交点坐标和理解有关最小值问题是解本题的关键,难点是理解MD+MC的值最小如何求.2、x≤1【解析】【分析】由表格得到函数的增减性后,再得出时,对应的的值即可.【详解】解:当时,,根据表可以知道函数值y随的增大而减小,∴不等式的解集是.故答案为:.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.3、303、10、13【解析】【分析】(1)根据路程与时间求出乙登山速度,再求2分钟路程即可;(2)先求甲速度,再求出乙提速后得速度,再用待定系数法求AB与CD解析式,根据解析式组成方程组求出相遇时间,利用两函数之差=70建构方程求出相遇后相差70米的时间或乙到终点相距70米的时间即可.【详解】解:(1)内乙的速度为15÷1=15m/min,∴;(2)甲登山上升速度是(m/min),乙提速后速度是(m/min).(min).设甲函数表达式为,把(0,100),(20,300)代入,得解得.设乙提速前的函数表达式为.把(1,15)代入,得,设乙提速后的函数表达式为,把(2,30),(11,300)代入,得解得,当时,解得;当时,解得;当时,解得.综上所述:登山3min、10min、13min时,他们俩距离地面的高度差为70m.【点睛】本题考查一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程,掌握一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程是解题关键.4、【解析】【分析】直接利用函数的图象确定答案即可.【详解】解:观察图象知道,当x=0时,y=1,∴当x≤0时,y≥1,故答案为:x≤0.【点睛】本题考查了函数的图象的知识,属于基础题,主要考查学生对一次函数图象获取信息能力及对解不等式的考查.5、【解析】【分析】根据正比例函数的性质列不等式求解即可.【详解】解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,∴k﹣2<0,解得,k<2.故填:k<2.【点睛】本题主要考查了正比例函数的性质、正比例函数的图象等知识点,根据正比例函数图象所在的象限列出不等式是解答本题的关键.三、解答题1、(1)60;(2)AB的解析式为y=20x-40(2≤x≤6.5);BC的解析式为y=-60x+480(6.5≤x≤8);(3)甲车出发112小时或74小时或94【解析】【分析】(1)利用先出发半小时行驶的路程为30千米,可得答案;(2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可;(3)结合运动状态,分四种情况讨论,当甲车出发而乙车还没有出发时,即0≤x≤0.5,当乙车追上甲车时,时间为2小时,当0.5<x≤2时,当乙车超过甲车时,而乙车到达终点时,甲车行驶时间为6.5小时,当2<x≤6.5时,当乙车到达后,甲车继续行驶,当6.5<x≤8时,再列方程解方程可得答案.【详解】解:(1)甲行驶的速度为:30÷0.5=60(千米/小时),故答案为:60.(2)如图所示:设甲出发x小时后被乙追上,根据题意得:60x=80(x-0.5),解得x=2,即甲出发2小时后被乙追上,∴点A的坐标为(2,0),而480÷80+0.5=6.5(时),即点B的坐标为(6.5,90),设AB的解析式为y=kx+b,由点A,B的坐标可得:{2k+b=06.5k+b=90,解得所以AB的解析式为y=20x-40(2≤x≤6.5);∵乙车的速度每小时为60千米∴kBC=-60,∴C(8,0),设BC的解析式为y=-60x+c,则-60×8+c=0,解得c=480,故BC的解析式为y=-60x+480(6.5≤x≤8);(3)根据题意得:当甲车出发而乙车还没有出发时,即0≤x≤0.5,∴x=5当乙车追上甲车时,时间为2小时,当0.5<x≤2时,60x-80(x-0.5)=5,解得:x=当乙车超过甲车时,而乙车到达终点时,甲车行驶时间为6.5小时,当2<x≤6.5时,80(x-0.5)-60x=5,解得:x=9当乙车到达后,甲车继续行驶,当6.5<x≤8时,60x=480-5,解得:x=95答:甲车出发112小时或74小时或94【点睛】本题是一次函数的应用,属于行程问题,考查了利用待定系数法求一次函数的解析式,并与行程问题的路程、时间、速度相结合.读出图形中的已知信息,运用了数形结合的思想解决函数问题是解本题的关键.2、(1)2x(0<x<2);(2)1;(3)y=63x(0<x≤1).y=123【解析】【分析】(1)根据点P运动的速度与时间的乘积即可得出AP=2x(0<x<2);(2)根据△ABC为等边三角形,AB=AC=4cm,得出∠ACB=∠A=60°,根据PQ⊥AB,当Q与C重合时,△ACP为直角三角形,∠ACP=30°,根据30°直角三角形性质得出AP=12AC=2,即2x(3)分两种情况,点Q在AC上,点Q在BC上,点Q在AC上,当0<x≤1时,在Rt△APQ中,PQ=23x,根据△PQD为等边三角形,y=63x(0<x≤1);点Q在BC上,当1<x≤2时,BP=4﹣2x,先求出BQ=2BP=2(4﹣2x)=8﹣4x,在Rt△BPQ中,PQ=43-23x,根据△【详解】解:(1)∵动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,点P的运动时间是x(s)(0<x<2),∴AP=2x(0<x<2),故答案为2x(0<x<2);(2)如图,∵△ABC为等边三角形,AB=AC=4cm,∴∠ACB=∠A=60°,∵PQ⊥AB,当Q与C重合时,△ACP为直角三角形,∠ACP=30°,∴AP=12AC即2x=2,解得x=1,故答案为1;(3)分两种情况,点Q在AC上,点Q在BC上,当点Q在AC上,0<x≤1时,在Rt△APQ中,PQ=AQ∵△PQD为等边三角形,∴y=3PQ=6即y=63x(0<当点Q在BC上,1<x≤2时,BP=4﹣2x,∴BQ=2BP=2(4﹣2x)=8﹣4x,在Rt△BPQ中,PQ=BQ∵△PQD为等边三角形,∴y=3PQ=34即y=123-63【点睛】本题考查动点问题,等边三角形性质,30°直角三角形的性质,解一元一次方程,勾股定理,掌握动点问题解题方法,等边三角形性质,30°直角三角形的性质,解一元一次方程,勾股定理是解题关键.3、(1)y=x+2;(2)①增大;②函数有最小值0;函数图象关于直线x=﹣2对称【解析】【分析】(1)先根据直线平移时k的值不变得出k=1,再将点(﹣2,0)代入y=x+b,求出b的值,即可得到一次函数的解析式;(2)观察图象即可求得.【详解】解:(1)∵一次函数y=kx+b的图象由函数y=x的图象平移得到,∴k=1,又∵一次函数y=x+b的图象过点(﹣2,0),∴﹣2+b=0.∴b=2,∴这个一次函数的表达式为y=x+2;(2)将一次函数y=kx+b在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示).①根据图象,当x>﹣2时,y随x的增大而增大,故答案是:增大;②函数有最小值0;函数图象关于直线x=﹣2对称.【点睛】本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键.4、(1)y=2x+7;(2)m的值为﹣2.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论