




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市慈溪市三山高级中学2025年第二学期高三数学试题一模(期末)质量调研考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”的否定是()A. B.C. D.2.设复数满足,在复平面内对应的点为,则()A. B. C. D.3.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④5.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.6.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.7.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A. B. C. D.8.的内角的对边分别为,已知,则角的大小为()A. B. C. D.9.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.10.函数的对称轴不可能为()A. B. C. D.11.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.12.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,记,则的展开式中各项系数和为__________.14.已知向量,,则______.15.己知函数,若曲线在处的切线与直线平行,则__________.16.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.18.(12分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.19.(12分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.20.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直线l与曲线C交于不同的两点A、B,求的值.21.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值.22.(10分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.【点睛】本题考查全称命题的否定,难度容易.2、B【解析】
设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设∵,∴,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.3、B【解析】
根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.4、D【解析】
利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.5、B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.6、D【解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.7、C【解析】
根据程序框图写出几次循环的结果,直到输出结果是8时.【详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环:第八次循环:所以框图中①处填时,满足输出的值为8.故选:C【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.8、A【解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.9、A【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.10、D【解析】
由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.11、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.12、A【解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.14、【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.15、【解析】
先求导,再根据导数的几何意义,有求解.【详解】因为函数,所以,所以,解得.故答案为:【点睛】本题考查导数的几何意义,还考查运算求解能力以及数形结合思想,属于基础题.16、20【解析】
根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2)证明见解析.【解析】
(1)利用零点分段法将表示为分段函数的形式,由此求得的最大值,进而求得的值.(2)利用(1)的结论,将转化为,求得的取值范围,利用换元法,结合函数的单调性,证得,由此证得不等式成立.【详解】(1)当时,取得最大值.(2)证明:由(1)得,,,当且仅当时等号成立,令,则在上单调递减当时,.【点睛】本小题主要考查含有绝对值的函数的最值的求法,考查利用基本不等式进行证明,属于中档题.18、(1)(2)【解析】
(1)利用余弦定理可得的长;(2)利用面积得出,结合正弦定理可得.【详解】解:(1)由题可知.在中,,所以.(2),则.又,所以.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,已知角较多时一般选用正弦定理,已知边较多时一般选用余弦定理.19、(1)(2)【解析】
(1)利用降次公式、辅助角公式化简解析式,根据三角函数单调区间的求法,求得的单调递增区间.(2)先由求得,利用正弦定理得到,结合余弦定理列方程,求得,由此求得三角形的面积.【详解】(1)函数,,由,得.所以的单调递增区间为.(2)因为且为锐角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.20、(1),(2)【解析】
(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2)由于在直线上,写出直线的标准参数方程参数方程,代入曲线的方程利用参数的几何意义即可得出求解即可.【详解】(1)直线的普通方程为,即,根据极坐标与直角坐标之间的相互转化,,,而,则,即,故直线l的普通方程为,曲线C的直角坐标方程(2)点在直线l上,且直线的倾斜角为,可设直线的参数方程为:(t为参数),代入到曲线C的方程得,,,由参数的几何意义知.【点睛】熟练掌握极坐标与直角坐标的互化公式、方程思想、直线的参数方程中的参数的几何意义是解题的关键,难度一般.21、(1)见解析;(2).【解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.【详解】(1)证明:∵四边形是菱形,,平面平面,又是的中点,,又平面(2)∴直线与平面所成的角等于直线与平面所成的角.平面,∴直线与平面所成的角为,即.因为,则在等腰直角三角形中,所以.在中,由得,以为原点,分别以为轴建立空间直角坐标系.则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为.(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)【点睛】本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.22、(1)证明见解析,;(2)11202
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论