




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12圆
1.圆的有关概念
⑴圆上各点到圆心的距离都等于.圆由两个元素决定,分别是______和圆心确定圆的
半径确定圆的.圆心相同,半径不等的圆是;圆心不同,半径相等的圆是.
(2)连接圆上任意两点的线段叫作_____.直径是经过_______的弦,是圆中的弦.
⑶圆上任意两点间的部分叫作_______大于半圆的弧叫作小于半圆的弧叫作.
2.圆周角与圆心角的关系
顶点在圆心的角叫作;顶点在圆上,并且两边都和圆相交的角叫作.在同圆或等圆中,如果两个圆
心角、两条弧、两条弦、两条弦心距、两个圆周角中有一组量_________那么它们所对应的其余各组量都分别—
—.同弧或等弧所对的圆周角,都等于它所对的圆心角的_______.直径所对的圆周角是__________;90°
的圆周角所对的弦是.
3.垂径定理
垂直于弦的直径平分并且平分;平分弦(不是直径)的________垂直于弦,并且
平分.
4.点与圆的位置关系
点与圆的位置关系有三种:①②,③.
5直线与圆的位置关系
⑴直线与圆的位置关系共有三种:①,②,③—.对应的圆心到直线的距离d和圆的半径r之间的
数量关系分别为④dr,⑤dr,@dr.
(2)切线的判定方法有:①与圆有公共点的直线是圆的切线;②到的距离等于的直线是圆的切
线;③经过半径的并且____这条半径的直线是圆的切线.在经过圆外一点的圆的切线上,这点和切点之间的线
段的长叫作这点到圆的;从圆外一点引圆的两条切线,它们的切线长圆心和这一点的连线
两条切线的夹角.
6.圆与圆的位置关系
⑴圆与圆的位置关系共有三大种:①,③,②,也可分为五小种:①,③,③—
一④,⑤.
(2)两圆的圆心距d和两圆的半径R,r(RNr)之间的数量关系分别为①dR-r,②dR-r,③R-r_
dR+r,®dR+r,⑤dR+r.
7.圆的有关计算
(1)弧长、扇形面积的计算
已知0O的半径为R,圆心角为n。的弧长1的计算公式为;圆心角为n。的扇形的面积为_______或_
(2)圆锥侧面积、全面积的计算
圆锥的侧面积就是其侧面展开图的扇形面积;圆锥的全面积就是它的与它的的和.
8.圆中常见的辅助线
(1)遇到时,一般要引直径上的圆周角,将直径这一条件转化为的条件.
(2)遇到时,一般要引的半径,以便利用切线的性质定理;或连接的弦,以便利用弦切角
定理.
(3)遇到过圆外一点作圆的两条时,常常引这点到圆心的以便利用切线长定理及其推论.
(4)遇两圆_______,要添加,或者连心线,特别是它在相交两圆中起着桥梁作用.
实战演练
1.如图,在△ABC中,NACB=9(T,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在。A内且点B在。A
外时,r的值可能是()
A.2B.3
C.4D.5
2.如图,AD,BC是。O的直任点P在BC的延长线上,PA与。O相切于点A,连接BD,若NP=40°,则NAD
B的度数为()
C.500D.25°
3.某款“不倒翁”(图1)的主视图是图2,PA,PB分别与4姐所在圆相切于点A,B,若该圆半径是9cm,/P=40。,则
AMB的长是)
M
正面
图1图2
A.l1兀cm
11
B.—ncm
2
C.771cm
Dc.7-ncm
2
4.如图,△ABC内接于。O,AD是。O的直径,若/B=20。,则NCAD的度数是)
A.60°
B.65°
C.70°
D.75°
5.如图,△ABC内接于OO,NC=46。,连接OA,则NOAB=()
A.44°
B.45°
C.54°
D.67°
6.如图,AB是圆O的直径,弦AD平分NBAC,过点D的切线交AC于点E,NEAD=25。,则下列结论错误
的是()
E,
D
AB
A.AE±DE
B.AE/70D
C.DE=OD
D.ZBOD=50°
7.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”
圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳
升起的速度为)
海平线
A.1.0厘米/分
B.0.8厘米/分
C.1.2厘米/分
D.1.4厘米/分
8.如图,在矩形ABCD中,AB=®BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则
DE的长为()
A.47I/3
B.兀
C.2兀/3
D.71/3
9.如图,AB是。O的直径,弦CD交AB于点E,连接AC,AD.gZBAC=28°J!JZD=
10.如图,。0是四边形ABCD的外接圆,若ZABC=110。,则/ADC='
11.如图,在口ABCD中,AD=12以AD为直径的。。与BC相切于点E,连接0C.若OC=AB,则口ABCD的周长为
12.已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为.
13.已知AB为0O的直径,AB=6,C为。O上一点,连接CA,CB.(1)如图①,若C为四的中点,求/CAB的大小
和AC的长;⑵如图②,若AC=2,OD为。O的半径,且ODLCB,垂足为E,过点D作。0的切线,与AC的延长
线相交于点F,求FD的长.
14.如图.AB为。O的直径,CD是0O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E且交BC-于点F,
交BC于点P,连接BF,CF.
(1)求证:/DCP=/DPC;
(2)当BC平分/ABF时,求证:CF〃AB;
⑶在⑵的条件下,OB=2,求阴影部分的面积
D
15.如图,圆0中两条互相垂直的弦AB,CD交于点E.
(DM是CD的中点,OM=3,CD=12,求圆O的半径长;
⑵点F在CD上,且CE=EF,求证:AF_LBD.
压轴预测
1.如图,矩形ABCD中,AB=6cm,BC=12cm以B为圆心,BC为半径画弧交AD于点E,则扇形EBC的面
积为()
B.8ncm2
C.12ncm2
D.ISncm2
2.如图.△ABC中,AB=2,AC=V2以点A为圆心,1为半径的圆与BC相切分别交AB,AC于点D,E,则DE的
长是()
C.it/2
3.如图,一个宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰
好为“2”和“8”(单位cm),那么该圆的半径为cm.
4.如图.扇形AOB中.半径OA=2,圆心角/AOB=60。以OA为直径的半圆交OB于点C,则图中两个阴影部分
面积的差的绝对值是.
5.如图,△ABC为0O的内接三角形,且AB为。。的直径,DE与。O相切于点D,交AB延长线于点E,OD与
BC交于点F,ZE=ZADC.
(1)求证:AD平分/BAC;
⑵若CF=2DF,AC=6,求。0的半径r.
参考答案
1.(1)圆的半径圆心半径位置大小同心圆等圆
⑵弦圆心最长
⑶弧优弧劣弧
2.圆心角圆周角相等相等相等一半直角圆的直径
3.弦弦所对的两条弧直径弦所对的两条弧
4.点在圆内点在圆上点在圆外
5.⑴相离相切相交>=<
⑵唯一圆心半径外端垂直于切线长相等平分
6.(1)相离相切相交内含内切相交外切外离
(2)<=<<=>
7.(1)Z=—S=—S=-Zff
'J1803602
⑵底面积侧面积
8.⑴直径直角
(2)切线过切点过切点
⑶切线连线
⑷相交公共弦公共弦
1.C【解析】本题考查勾股定理、点和圆的位置关系.在RtAABC中,AB=5,BC=4,由勾股定理可得AC=3.:点
C在。A内,:.r>3又点B在。A外,.」‘.匕弋仃,即r的值可能是4,故选C.
2.A【解析】本题考查切线的性质、三角形的外角性质、圆周角定理.因为PA与OO相切,所以NOAP=90。.
又/P=40。,所以/AOB=NOAP+ZP=130。,所以^ADB=|NAOB=65。,故选A.
3.A【解析】本题考查圆的切线的性质、弧长公式.设圆心为O,连接OA,OB,由题意得OAJ_PAQBJ_PB,
由四边形的性质知乙AOB=180°一乙P=180°-40°=140。,所以AMB的度数是360°-140°=220。,所以
AMB=皆孩。=11兀(cm)故选A.
4.C【解析】本题考查圆周角定理的推论.连接BD.因为AD是圆O的直径,所以NABD=90。又/ABC=20。,所
以乙CBD=90°-20°=70°,,所以NCAD=NCBD=70°,故选C.
c.
5.A【解析】本题考查圆周角定理、等腰三角形的性质.如图,连接OB.:/C=46°,.\ZAOB=2ZC92°.
一180°—92°44
又。力=0B,:.A0AB=2"=。,故选A.
6.C【解析】本题考查切线的性质、平行线的判定与性质、圆周角定理.因为OA=OD,所以NOAD=NODA.因
为AD平分NBAC,所以NOAD=NCAD,所以/ODA=NCAD,所以AE〃OD,故B选项正确;因为DE是圆。的切线,
所以ODJ_DE,所以AEJ_DE,故A选项正确;在直角梯形ODEA中,OA>DE.又OA=OD.所以OD>DE,故C选项
错误;因为/EAD=25°,所以NBAD=NEAD=25。,所以NBOD=2NBAD=50。,故D选项正确,故选C.
7.A【解析】本题考查圆的性质、勾股定理、垂径定理如图过点。作OHLAB于点H,连接OA,则AH=BH=
\AB=8厘米在RtAAOH中,/OHA=90OQA=10厘米,所以由勾股定理得OH=y/OA2-AH2=6厘米.又因为从
目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,所以“图上”太阳升起的速度为(6+10)+16=1.0厘米/分
故选A.
8.C【解析】本题考查矩形的性质、勾股定理、弧长公式.在矩形ABCD中,NDAB=/B=9(r,AD=BC=2,,A
E=AD=2.在RtAABE中,AB=V3,.\BE=y/AE2-AB2=1,BE=\AE,:.^BAE=30。,:^DAE=60°,•••I
607T-2=|兀,故选
DEc.
180
9.62【解析】本题考查圆周角定理的推论.如图,连接BC.TAB是。O的直径,NACB=90o「・,NBAC=28。,
・•・ZABC=90o-28o=62o,.\ND=NABC=62。.
10.70【解析】本题考查圆内接四边形的性质.•・•四边形ABCD内接于OO,NABC=ll(r,・・・NADC=180。-乙4BC
=180°-110°=70°.
11.24+6遥【解析】本题考查圆的性质、圆的切线的性质、勾股定理、等腰三角形的性质.如图,连接0E,
过点C作CH±OD于点H,则OE,BC,OE〃CH.因为四边形ABCD是平行四边形,所以AD〃BC又AD=12,所以CH
=OE=6.因为AB=CD,OC=AB,所以OC=CD,所以(OH=DH=^0D=3.在RtACDH中,由勾股定理得CD=
V32+62=3店,所以AB=CD=3V5,,所以平行四边形ABCD的周长为((12+3有)x2=24+6乘.
12.3兀【解析】本题考查圆锥的侧面展开图、扇形的面积..••圆锥的侧面展开图是扇形,.
S砌=7rM=3X1X兀=3兀,,该圆锥的侧面展开图的面积为3兀
侧
掌握圆锥的侧面展开图的扇形面积公式是解答本题的关键.
13.⑴45°,3V2(2)2V2
⑴根据直径所对的圆周角是直角得/ACB=90。,再根据等弧所对的弦相等,进而证明^ABC是等腰直角三角
形,利用勾股定理可求出AC的长;⑵根据切线的性质和已知垂直关系以及NACB=90。,可判定四边形ECFD是矩
形,得对边相等,求出FD与CB的数量关系,在RtAABC中,利用勾股定理求出CB的长,即可求出FD的长.
解:(1):AB为。O的直径,
ZACB=90°.
由C为AB的中点,得.左=BC.
:.AC=BC得/ABC=NCAB.
在RtAABC中./ABC+/CAB=90。,
ZCAB=45°.
根据勾股定理,有力C2+BC2=AB2.
又AB=6,得24c2=36.AC=372.
(2);FD是。。的切线,
ODXFD.gpZODF=90°.
:OD_LCB,垂足为E,
•••Z.CED=90°,CE=-CB.
,2
同⑴可得/ACB=90°,有/FCE=90°.
ZFCE=ZCED=ZODF=90°.
四边形ECFD为矩形.
;.FD=CE.于是FD=\CB.
在RtAABC中,由AB=6,AC=2彳导
CB=y/AB2-AC2=4V2.FD=2但
14.(1)略⑵略⑶等一百
(1)连接OC,根据切线的性质及EDXOB得到两组互余的角,再根据等边对等角结合等角的余角相等进行等
量代换,即可得证;⑵连接OF,证明△OFB是等边三角形,根据等边三角形的性质与圆周角定理求出NFCB的度
数,结合角平分线的性质求出/OBC的度数,然后利用平行线的判定即可证明结论成立,・⑶根据圆周角定理及半
径相等证明△COF是等边三角形,再结合垂直平分线及勾股定理求出EF的长,然后利用三角形的面积公式与扇形
的面积公式求解即可.
解:⑴证明:连接OC.
:CD是。。的切线,
ZOCB+ZDCP=90°.
VEDXOB,
ZOBC+ZEPB=90°.
VOC=OB,
ZOCB=ZOBC.
/.ZDCP=ZEPB.
/EPB=NDPC,
ZDCP=ZDPC.
(2)证明:连接OF.
,/ED垂直平分OB,/.OF=FB.
又;OF=OB,
•••△OFB是等边三角形.
.\ZFOB=ZFBO=60°.
•••NFCB=%NFOB=30°,
2
VBC平分NABF,
i
・•・乙OBC=乙FBC=-^FBO=30°.
2
:.ZOBC=ZFCB.
・・・CF〃AB.
(3)由(2)得NFBC=30。,
JZCOF=60°.
VOF=OC,
••.△COF是等边三角形.
OB=2,JOF=OC=CF=2.
VED垂直平分OB,OF=2,
・•・ZOEF=90°,OE=1,
・•・由勾股定理,得EF=V3.
SC0F=|x2xV3=V3.
..S_60X7TX22_271
.鬲物”_360_3,
・'S^=S^^OF-SCOF=%—回
15.(1)3曲(2)略
⑴连接OCQD.根据M是CD的中点可得DM=CM=在RtAOMD中,利用勾股定理即可得出半径O
D的长;⑵连接AC,延长AF交BD于点N,证明△AEC04AEF,可得ZEAC=ZEAF,根据NBAC=/BDC
以及三角形外角的性质即可证明/AND=90。.
解:⑴如图,连接OC,OD,
因为M是CD的中点且CD=12,
所以CM=DM=6且OM±DM.
在RtAOMD中,由勾股定理得
0D=y/OM2+MD2=V32+62=3有,
所以圆O的半径长为3V5
⑵证明:如图.连接AC,延长AF交BD于点N.
在小AEC与4AEF中,
因为AE=AE,/AEC=NAEF,EC=EF,
所以△AEC^AAEF.
于是/EAC=NEAF.
又因为NBAC=/BDC.
所以/AND=NBAN+NABN
=ZCDB+ZABD=90°.
于是AF_LBD.
压轴预测
1.C【解析】本题考查矩形的性质、特殊角的三角函数值、扇形的面积公式.在矩形ABCD中,NA=NABC=9
0°.在RtAABE中,AB=6,BE=BC=12,;.cos/ABE=ABE=—=ZABE=60°,/.ZEBC=30°,:.S5=
1,5122,角形EBC
当当=12兀皿2,即扇形EBC的面积为1271cm2,故选C.
2.D【解析】本题考查圆的切线的性质、弧长的计算公式.设BC与圆相切于点F,连接AF,则AFXBC.在R
tAAFB中,AB=2,AF=1,;.ZABF=30°,.\/BAF=60°.在RtAAFC中,AC=V^,AF=1,;.CF=1,,ZCAF=45。,;
ABAC=105°,;.DE=="故选D.
18012
3.今【解析】本题考查垂径定理、勾股定理.如图,取圆心O,设切点为点C,直尺与圆相交于A,B两点,
连接OAQCQC交A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (二模)2025年深圳市高三年级第二次调研考试地理试卷(含标准答案)
- 专业介绍课件
- 高速公路改建工程承包合同书
- 辽宁政法职业学院《生物工程导论》2023-2024学年第二学期期末试卷
- 洛阳科技职业学院《西方医学史》2023-2024学年第二学期期末试卷
- 江苏省两校2024-2025学年高三四模(5月)物理试题试卷含解析
- 云南省昭通市昭阳区达标名校2024-2025学年初三年级第一次调研考试生物试题含解析
- 苏州工业园区职业技术学院《中国大学发展史》2023-2024学年第二学期期末试卷
- 苏州幼儿师范高等专科学校《大学化学及实验》2023-2024学年第二学期期末试卷
- 吉林省白城市通榆一中2024-2025学年高三期末热身联考英语试题含解析
- 健康教育心肺复苏知识讲座(3篇模板)
- 五年级上册体育教案(表格式)
- DL-T5190.1-2022电力建设施工技术规范第1部分:土建结构工程
- (正式版)JTT 1499-2024 公路水运工程临时用电技术规程
- 中国高清荧光腹腔镜行业市场现状分析及竞争格局与投资发展研究报告2024-2034版
- 国企管理人员招聘考试题库
- 托管老师员工手册
- 中医养生的健康体重
- 中石化公司招聘考试真题
- 统编版一年级语文下册部编版第六单元单元教材解读(素材)(课件)
- 乳腺结节手术后的护理
评论
0/150
提交评论