福建省永春县第一中学2025届第二学期高三期末考试数学试题试卷_第1页
福建省永春县第一中学2025届第二学期高三期末考试数学试题试卷_第2页
福建省永春县第一中学2025届第二学期高三期末考试数学试题试卷_第3页
福建省永春县第一中学2025届第二学期高三期末考试数学试题试卷_第4页
福建省永春县第一中学2025届第二学期高三期末考试数学试题试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省永春县第一中学2025届第二学期高三期末考试数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的大致图象为A. B.C. D.2.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.3.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.454.己知,,,则()A. B. C. D.5.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.6.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.7.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,8.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立9.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤10.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)11.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是()A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%12.函数f(x)=的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体ABCD-A1B1C1D1棱长为2,点P是上底面14.设是公差不为0的等差数列的前n项和,且,则______.15.已知函数的图象在点处的切线方程是,则的值等于__________.16.在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.18.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.19.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.20.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.21.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.22.(10分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.879

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

因为,所以函数是偶函数,排除B、D,又,排除C,故选A.2.C【解析】

首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.3.B【解析】

计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.4.B【解析】

先将三个数通过指数,对数运算变形,再判断.【详解】因为,,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.5.B【解析】

考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.6.D【解析】

设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.7.A【解析】

依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.8.C【解析】

写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.9.B【解析】

依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.10.C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.11.D【解析】

A.从第一个图观察居住占23%,与其他比较即可.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D.易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A.CPI一篮子商品中居住占23%,所占权重最大的,故正确.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.12.D【解析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.π.【解析】

设三棱锥P-ABC的外接球为球O',分别取AC、A1C1的中点O、O1,先确定球心O'在线段AC和A1C1中点的连线上,先求出球O【详解】如图所示,设三棱锥P-ABC的外接球为球O'分别取AC、A1C1的中点O、O1由于正方体ABCD-A则△ABC的外接圆的半径为OA=2设球O的半径为R,则4πR2=所以,OO则O而点P在上底面A1B1由于O'P=R=41因此,点P所构成的图形的面积为π×O【点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.14.18【解析】

将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【详解】因为,所以.故填:.【点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.15.【解析】

利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.16.【解析】

对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,,切线斜率,则切线方程为,令,解得,又的面积为3,,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或.(2)存在,;【解析】

(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【详解】(1)因为过点,,所以圆心在的垂直平分线上.由已知的方程为,且,关于于坐标原点对称,所以在直线上,故可设.因为与直线相切,所以的半径为.由已知得,,又,故可得,解得或.故的半径或,所以的方程为或.(2)法一:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,,则得,的中点,则以为直径的圆的半径为:,到轴的距离为,令,①化简得,即,故当时,①式恒成立.所以存在定点,使得以为直径的圆与轴相切.法二:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,因为抛物线的焦点坐标为,点在抛物线上,所以,线段的中点的坐标为,则到轴的距离为,而,故以为径的圆与轴切,所以当点与重合时,符合题意,所以存在定点,使得以为直径的圆与轴相切.【点睛】本题考查了圆的标准方程求法,动点轨迹方程的求法,抛物线定义及定点问题的解法综合应用,属于难题.18.(1),;(2).【解析】

(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别为,,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.【点睛】本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系.19.(1)(2)见解析,【解析】

(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,,.所以X的分布表为:X012P所以.【点睛】本题是一道考查概率和期望的常考题型.20.(1)证明见解析(2)【解析】

(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论