2025届河南省新乡市重点中学高三下学期4月一模考试数学试题试卷_第1页
2025届河南省新乡市重点中学高三下学期4月一模考试数学试题试卷_第2页
2025届河南省新乡市重点中学高三下学期4月一模考试数学试题试卷_第3页
2025届河南省新乡市重点中学高三下学期4月一模考试数学试题试卷_第4页
2025届河南省新乡市重点中学高三下学期4月一模考试数学试题试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省新乡市重点中学高三下学期4月一模考试数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是边长为的正三角形,若,则A. B.C. D.2.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.3.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种4.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.5.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.116.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为()A. B. C. D.7.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,8.已知,则的值等于()A. B. C. D.9.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.10.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.11.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.3212.是虚数单位,则()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为__________.14.若满足约束条件,则的最小值是_________,最大值是_________.15.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.16.已知数列{an}的前n项和为Sn,向量(4,﹣n),(Sn,n+3).若⊥,则数列{}前2020项和为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.18.(12分)如图,在四棱锥中,底面为直角梯形,,,,,,点、分别为,的中点,且平面平面.(1)求证:平面.(2)若,求直线与平面所成角的正弦值.19.(12分)已知函数的最大值为2.(Ⅰ)求函数在上的单调递减区间;(Ⅱ)中,,角所对的边分别是,且,求的面积.20.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.21.(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.22.(10分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由可得,因为是边长为的正三角形,所以,故选A.2.D【解析】

根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.3.C【解析】

先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.4.A【解析】

本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.5.D【解析】

由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.6.B【解析】

设过点作的垂线,其方程为,联立方程,求得,,即,由,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,,即,由,所以有,化简得,所以离心率.故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.7.B【解析】

试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.8.A【解析】

由余弦公式的二倍角可得,,再由诱导公式有,所以【详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题9.D【解析】

根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.10.A【解析】

根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.11.A【解析】

根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.12.C【解析】

由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】

由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值.【详解】,可得,由,则或,即或,由题意得,所以,则或,所以可取到的最大值为4.故答案为:4【点睛】此题考查正弦函数的图像和性质的应用及三角方程的求解,熟练应用三角函数的图像和性质是解题的关键,考查了推理能力和计算能力,属于中档题.14.06【解析】

作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.15.【解析】

构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.16.【解析】

由已知可得•4Sn﹣n(n+3)=0,可得Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.可得:2().利用裂项求和方法即可得出.【详解】∵⊥,∴•4Sn﹣n(n+3)=0,∴Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.,满足上式,.∴2().∴数列{}前2020项和为2(1)=2(1).故答案为:.【点睛】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ)有最大值,最大值为3.【解析】

(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】(Ⅰ)由得再由正弦定理得因此,又因为,所以.(Ⅱ)当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.18.(1)见解析(2)【解析】

(1)首先可得,再面面垂直的性质可得平面,即可得到,再由,即可得到线面垂直;(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,利用空间向量法求出线面角;【详解】解:(1)∵,点为的中点,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分别为,的中点,∴,∴,又平面,平面,,∴平面.(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,∵,∴,,,,∴,,,设平面的法向量为,由,得,令,得,∴,∴直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法求线面角,属于中档题.19.(Ⅰ)(Ⅱ)【解析】

(1)由题意,f(x)的最大值为所以而m>0,于是m=,f(x)=2sin(x+).由正弦函数的单调性可得x满足即所以f(x)在[0,π]上的单调递减区间为(2)设△ABC的外接圆半径为R,由题意,得化简得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②将①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故20.(1).(2)【解析】

(1)利用线面垂直的性质得出,进而得出,利用相似三角形的性质,得出,从而得出的值;(2)利用线面垂直的判定定理得出平面,进而得出四面体的体积,计算出,,即可得出四面体的体积.【详解】(1)因为平面,平面,所以又因为,都垂直于平面,所以又,分别是正方形边,的中点,且,所以.(2)因为,分别是正方形边,的中点,所以又因为,都垂直于平面,平面,所以因为平面,所以平面所以,四面体的体积,所以.【点睛】本题主要考查了线面垂直的性质定理的应用,以及求棱锥的体积,属于中档题.21.(1)见解析(2)1【解析】

(1)选②,③.可得,结合,求得.即可;若选①,②.由可得由,求得.即可;若选①,③,可得,又,可得,即可;(2)化简,根据角的范围求最值即可.【详解】(1)若选②,③.,,,,又,.的面积.若选①,②.由可得,,,又,.的面积.若选①,③,,又,,可得,的面积.(2),当时,有最大值1.【点睛】本题考查了正余弦定理,三角三角恒等变形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论