商不变的规律(教学设计)-2024-2025学年四年级上册数学苏教版_第1页
商不变的规律(教学设计)-2024-2025学年四年级上册数学苏教版_第2页
商不变的规律(教学设计)-2024-2025学年四年级上册数学苏教版_第3页
商不变的规律(教学设计)-2024-2025学年四年级上册数学苏教版_第4页
商不变的规律(教学设计)-2024-2025学年四年级上册数学苏教版_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

商不变的规律(教学设计)-2024-2025学年四年级上册数学苏教版主备人备课成员教学内容分析嘿,亲爱的同学们,今天我们要一起探索数学的奇妙世界,学习一个非常有用的规律——商不变的规律。这节课我们主要学习的是苏教版四年级上册数学的“分数的除法”这一章节。你们还记得之前我们学过的分数除以整数吗?今天我们要深入挖掘其中的奥秘,看看商不变规律是如何帮我们简化计算的。这可是数学中的小秘密哦!🎉🎓核心素养目标在本节课的学习中,我们旨在培养学生的数学抽象、逻辑推理和数学建模核心素养。通过探索商不变的规律,学生们将学会如何将复杂的除法问题转化为简单的形式,这不仅提升了他们的数学抽象能力,还能帮助他们发展严谨的逻辑推理技能。此外,通过实际操作和应用,学生们将能够将数学知识建模到实际问题中,增强他们的数学建模意识。教学难点与重点1.教学重点:

-核心内容:商不变的规律,即在分数除以整数时,如果同时将被除数和除数乘以或除以相同的数(0除外),商不变。

-具体例子:例如,在计算$\frac{12}{4}$时,我们可以将被除数和除数同时乘以2,得到$\frac{24}{8}$,两者的商都是3。这个规律是本节课的核心,需要学生能够熟练运用。

2.教学难点:

-难点内容:理解并掌握商不变规律的应用,尤其是在分数除以分数的情况下。

-具体例子:当学生面临$\frac{2}{3}\div\frac{1}{2}$这样的题目时,他们可能会遇到困难,因为需要理解分数除以分数实际上是乘以倒数。例如,$\frac{2}{3}\div\frac{1}{2}$可以转化为$\frac{2}{3}\times\frac{2}{1}$,这里学生需要理解分数乘法的逆运算,即除以一个分数等于乘以它的倒数。这个难点在于将分数除法转化为分数乘法,并正确找到乘法的对象。

-难点突破:为了帮助学生突破这一难点,可以设计一系列的练习题,从简单的分数除以整数开始,逐渐过渡到分数除以分数,让学生在具体的操作中体会商不变规律的应用,并通过小组讨论和合作学习来共同解决问题。学具准备多媒体课型新授课教法学法讲授法课时第一课时师生互动设计二次备课教学资源-软硬件资源:电子白板、笔记本电脑、投影仪

-课程平台:学校内部数学教学平台

-信息化资源:分数除法相关的教学视频、在线练习题库

-教学手段:实物教具(如分数卡片)、多媒体课件、学生练习册教学过程(一)导入新课

1.老师板书:商不变的规律

2.老师提问:“同学们,你们还记得我们在上一节课学习了什么内容吗?”(学生回答:分数除以整数)

3.老师总结:“上一节课我们学习了分数除以整数的计算方法,今天我们要继续探索分数除法的奥秘,那就是——商不变的规律。”

(二)探究新知

1.老师展示课件:分数除以整数的例子,如$\frac{12}{4}$、$\frac{15}{5}$等,引导学生观察商的结果。

2.老师提问:“同学们,你们发现这些例子有什么共同点吗?”(学生回答:商都是整数)

3.老师总结:“是的,当我们用分数除以整数时,商都是整数。那么,如果我们用分数除以分数,会发生什么呢?”

4.老师展示课件:分数除以分数的例子,如$\frac{2}{3}\div\frac{1}{2}$、$\frac{4}{5}\div\frac{2}{3}$等,引导学生思考如何计算。

5.学生独立完成练习,老师巡视指导。

6.老师提问:“同学们,你们在计算过程中遇到了什么困难?”(学生回答:不知道如何计算)

7.老师总结:“同学们,当我们遇到分数除以分数的问题时,可以将除法转化为乘法,即除以一个分数等于乘以它的倒数。”

8.老师展示课件:分数除以分数的计算方法,如$\frac{2}{3}\div\frac{1}{2}=\frac{2}{3}\times\frac{2}{1}$

9.老师提问:“同学们,谁能来解释一下这个规律?”(学生回答:商不变的规律)

10.老师总结:“是的,这就是商不变的规律。当我们用分数除以整数或分数时,如果同时将被除数和除数乘以或除以相同的数(0除外),商不变。”

(三)巩固练习

1.老师展示课件:分数除法练习题,如$\frac{1}{4}\div\frac{1}{2}$、$\frac{5}{6}\div\frac{3}{4}$等,引导学生独立完成。

2.学生互相检查答案,老师巡视指导。

3.老师提问:“同学们,你们在解题过程中有没有运用到商不变的规律?”(学生回答:有)

4.老师总结:“很好,同学们在解题过程中已经成功地运用了商不变的规律。这说明你们已经掌握了这一规律。”

(四)课堂小结

1.老师提问:“同学们,今天我们学习了什么内容?”(学生回答:商不变的规律)

2.老师总结:“今天我们学习了商不变的规律,即在分数除以整数或分数时,如果同时将被除数和除数乘以或除以相同的数(0除外),商不变。”

3.老师强调:“同学们,掌握商不变的规律对于解决分数除法问题非常重要,希望大家能够在今后的学习中多加运用。”

(五)布置作业

1.老师展示课件:分数除法作业题,如$\frac{7}{8}\div\frac{1}{4}$、$\frac{9}{10}\div\frac{3}{5}$等,要求学生完成。

2.老师强调:“同学们,完成作业后要认真检查,确保答案正确。”

(六)课后拓展

1.老师提问:“同学们,你们还想知道关于分数除法的哪些知识?”(学生回答:分数乘法、分数除法与分数乘法的联系等)

2.老师总结:“很好,同学们对分数除法非常感兴趣。在接下来的学习中,我们将继续探索分数除法的奥秘,希望你们能够保持这种求知欲。”

3.老师布置课后拓展作业:收集关于分数除法的资料,如分数除法的历史、分数除法的应用等,下节课分享给大家。拓展与延伸1.提供与本节课内容相关的拓展阅读材料:

-《分数的奥秘》:这本书通过有趣的故事和实例,深入浅出地介绍了分数的概念、性质和应用,可以帮助学生更全面地理解分数的相关知识。

-《数学的故事》:这本书收录了数学历史上的经典故事,包括分数的起源和发展,让学生在阅读中感受数学的魅力,同时了解分数在历史中的作用。

-《分数的加减乘除》:这本小册子专门针对分数的运算进行讲解,通过例题和练习,帮助学生巩固本节课所学的内容,并提升他们的实际应用能力。

2.鼓励学生进行课后自主学习和探究:

-学生可以尝试自己解决一些与分数除法相关的实际问题,例如,计算购物时的折扣、分配食物等,将所学知识应用到实际生活中。

-学生可以探究分数除法在其他数学领域中的应用,如几何学中的面积和体积计算,以及物理学中的比例和比例关系。

-学生可以研究分数除法在不同文化中的表达方式和计算方法,了解分数在不同历史时期的发展变化。

-学生可以尝试将分数除法的概念推广到更复杂的数学问题中,如分式的运算、极限的初步理解等,培养他们的数学探究能力。作业布置与反馈作业布置:

1.完成课本第XX页的练习题,包括分数除以整数和分数除以分数的题目,要求学生独立完成,并自行检查答案。

2.选择2-3道难度适中的分数除法应用题,如计算购物时的折扣、分配食物等,将分数除法的知识应用到实际情境中。

3.编写一个简单的数学故事,故事中包含分数除法的元素,可以是生活中的小故事,也可以是虚构的故事,要求故事生动有趣,并体现分数除法的应用。

作业反馈:

1.对学生的作业进行及时批改,确保每位学生的作业都能得到反馈。

2.检查学生是否掌握了分数除法的基本计算方法,包括分数除以整数和分数除以分数。

3.关注学生在应用分数除法解决实际问题时是否能够正确运用商不变的规律。

4.对于计算错误,要分析错误原因,是基础知识掌握不牢固,还是解题方法不当。

5.在反馈中,不仅要指出错误,还要给出正确的解题思路和步骤,帮助学生理解错误所在。

6.对于表现良好的学生,给予积极的评价和鼓励,激发学生的学习兴趣和自信心。

7.对于作业中体现出的创新思维和独特解题方法,要进行表扬和推广,营造良好的学习氛围。

8.针对共性问题,可以在下一节课上进行集体讲解,帮助学生共同克服难点。

9.对于个别学生的问题,可以在课后进行个别辅导,确保每位学生都能跟上教学进度。

10.定期收集学生的作业反馈,了解学生的学习需求和困难,及时调整教学策略,以提高教学效果。教学反思与改进八、教学反思与改进

嘿,亲爱的同事们,今天我想和大家分享一下我对本节课的一些反思和改进的想法。

首先,我觉得本节课在引入新知时,可以通过一个实际的生活场景来激发学生的兴趣。比如,我们可以让学生想象自己正在准备一场生日派对,需要根据人数来分配蛋糕,这时候就可以引入分数除法的概念。这样的引入方式不仅贴近学生的生活,还能让他们更容易理解分数除法的实际意义。

然后,我在课堂上发现有些学生对于分数除以分数的计算方法掌握得不够扎实。在今后的教学中,我打算设计一些更具挑战性的练习题,让学生在解决实际问题的过程中加深对分数除法的理解。比如,可以设置一些需要他们先找到倒数再进行计算的题目,这样既能巩固知识点,又能提高他们的计算能力。

此外,我发现课堂上的互动环节还可以更加丰富。比如,在讲解商不变的规律时,可以让学生分组讨论,看看他们能否自己发现这个规律。这样的小组合作不仅能够提高学生的参与度,还能培养他们的团队协作能力。

在作业布置方面,我觉得可以增加一些开放性的题目,让学生发挥创意。比如,让学生设计一个分数除法的游戏,或者编写一个关于分数除法的童话故事。这样的作业不仅能够巩固知识,还能激发学生的创造力和想象力。

当然,我也意识到自己在课堂上的语言表达有时候过于直接,可能会让学生感到压力。所以,我计划在未来的教学中,更加注重语言的温和和鼓励性,用更多的肯定和激励来增强学生的自信心。

最后,我打算在课后进行一些教学反思的活动,比如让学生填写反馈表,了解他们对课堂内容的看法和建议。同时,我也会和同事们进行教学研讨,听取他们的意见和建议,共同提高我们的教学水平。重点题型整理1.题型:分数除以整数的计算

题目示例:计算$\frac{8}{3}\div4$的结果。

答案:$\frac{8}{3}\div4=\frac{8}{3}\times\frac{1}{4}=\frac{8}{12}=\frac{2}{3}$

2.题型:分数除以分数的计算

题目示例:计算$\frac{5}{6}\div\frac{1}{3}$的结果。

答案:$\frac{5}{6}\div\frac{1}{3}=\frac{5}{6}\times\frac{3}{1}=\frac{15}{6}=\frac{5}{2}$

3.题型:分数除以整数的应用题

题目示例:一本书共有120页,小明已经看了其中的$\frac{3}{4}$,还剩多少页没看?

答案:剩余的页数=总页数-已看的页数=$120-\frac{3}{4}\times120=120-90=30$页

4.题型:分数除以分数的应用题

题目示例:一个长方形的长是10厘米,宽是$\frac{2}{5}$厘米,求长方形的面积。

答案:面积=长×宽=$10\times\frac{2}{5}=\frac{20}{5}=4$平方厘米

5.题型:分数除法中的商不变规律应用题

题目示例:计算$\frac{12}{15}\div\frac{3}{5}$的结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论