




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年四川省凉山州高二下学期3月月考数学检测试题注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回,一、单选题(每道题5分)1.已知等比数列中,,,则A. B. C. D.【正确答案】A【分析】根据题意,将条件表示为的形式,计算出,再计算即可.【详解】∵等比数列中,,,∴,解得,∴.故选:A.2.已知等差数列的前n项和为,=5,则=()A.5 B.25 C.35 D.50【正确答案】B【分析】根据等差中项及等差数列求和公式即可求解.【详解】由题意可知,为等差数列,所以故选:B3.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日五尺,问日织几何?”意思是:“女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这名女子每天分别织布多少?”某数学兴趣小组依托某制造厂用织布机完全模拟上述情景,则从第一天开始,要使织布机织布的总尺数为165尺,则所需的天数为()A.7 B.8 C.9 D.10【正确答案】D【分析】设该女子第一天织布尺,根据题意,求得尺,结合等比数列求和公式,列出方程,即可求解.【详解】设该女子第一天织布尺,则5天共织布,解得尺,在情境模拟下,设需要天织布总尺数达到165尺,则有整理得,解得.故选:D.4.观察下列式子:,,,…,则可归纳出小于()A. B. C. D.【正确答案】C【分析】根据已知式子分子和分母的规律归纳出结论.【详解】由已知式子可知所猜测分式的分母为,分子第个正奇数,即,.故选:C.5.设曲线在点处的切线方程为,则()A.0 B.1 C.2 D.3【正确答案】D【分析】利用可求得答案.【详解】,∵,则.故选:D6.已知数列,都是等差数列,记,分别为,的前n项和,且,则=()A. B. C. D.【正确答案】D【分析】利用等差数列的性质以及前项和公式即可求解.【详解】由,.故选:D7.已知函数,其导函数为,则的值为()A.1 B.2 C.3 D.4【正确答案】C【分析】求得可得的解析式,求出解析式,可得为偶函数,即可求出的值,再求,即可求得的值,即可求得答案.【详解】,,所以为偶函数,所以,因为,所以,所以.故选:C.8.已知函数有两个零点,则实数的取值范围是()A. B. C. D.【正确答案】B【分析】分离变量,利用导函数应用得到函数在无零点,则有两个零点,利用函数最值得到参数范围【详解】当时,,∴不是函数的零点.当时,由,得,设,,则在上单调递减,且.所以时无零点当时,等价于,令,,得在上单调递减,在上单调递增,,.因为有2个零点,所以.故选:B.分离变量法,利用导数求函数的单调性,极值是解题关键.二、多选题(每道题6分)9.已知递减的等差数列的前项和为,,则()A. B.最大C. D.【正确答案】ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n项和公式逐项判断即可得解.【详解】因为,所以,即,因数列递减,所以,则,,故A正确;所以最大,故B正确;所以,故C错误;所以,故D正确.故选:ABD.10.已知定义在上的函数,其导函数的大致图象如图所示,则下列叙述不正确的是()A.B.函数在上递增,在上递减C.函数的极值点为,D.函数的极大值为【正确答案】ABD【分析】对A,B由导数与函数单调性的关系,即可判断,,的大小以及的单调性,对C,D由极值的定义即可判断.【详解】解:由题图知可,当时,,当时,,当时,,所以在上递增,在上递减,在上递增,对A,,故A错误;对B,函数)在上递增,在上递增,在上递减,故B错误;对C,函数的极值点为,,故C正确;对D,函数的极大值为,故D错误.故选:ABD.11.已知数列的前项和为,则下列说法正确的是()A. B.为的最小值C. D.【正确答案】AC【分析】利用和与项的关系,分和分别求得数列的通项公式,检验合并即可判定A;根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到可计算后否定D.【详解】,,对于也成立,所以,故A正确;当时,,当n=17时,当时,,只有最大值,没有最小值,故B错误;因当时,,∴,故C正确;,故D错误故选:AC.本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系,若数列的前项为正值,往后都是小于等于零,则当时有,若数列的前项为负值,往后都是大于或等于零,则当时有.若数列的前面一些项是非负,后面的项为负值,则前项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前项和只有最小值,没有最大值.三、填空题12.已知,则等于__________.(用数字作答)【正确答案】【分析】求导,代入,求出答案.【详解】,令得,解得.故13.已知,对任意的都有,则的取值范围为_______.【正确答案】【分析】利用导数研究函数的单调性,进而求得在给定区间上的最大值,根据不等式恒成立的意义即得实数a的取值范围.【详解】由得或,在区间[-2,0)上,单调递增;在(0,2)内时单调递减.又,,,∴,又对于任意的x∈[-2,2]恒成立,∴,即a的取值范围是故答案为.本题考查利用导数研究函数的在闭区间上的最值进而求不等式恒成立中的参数范围,属基础题,关键在于利用导数研究函数的单调性,求得在给定区间上的最大值.14.对任意都有.数列满足:,则__________.【正确答案】【分析】采用倒序相加法即可求得结果.【详解】由题意得:,,,……,,,,解得.故答案为.本题考查利用倒序相加法求和的问题,属于基础题.四、解答题15.已知数列各项均为正数,其前项和为,且满足.(1)求数列的通项公式.(2)设,求数列的前项和.【正确答案】(1);(2).【分析】(1)由可得,再由时,与条件作差可得,从而利用等差数列求通项公式即可;(2)由利用裂项相消求和即可.【详解】(1)∵,∴,解得,当时,由①可得,②,①-②:,∵,∴,∴,即∴,∴是以为首项,以为公差的等差数列,∴综上所述,结论是.(2)由(1)可得∴,综上所述,.16.已知数列中,,(1)证明:数列是等比数列(2)若数列满足,求数列的前项和.【正确答案】(1)证明见解析;(2).【分析】(1)由可得,然后可得答案;(2)由(1)可算出,,然后用错位相减法可算出答案.【详解】(1)证明:由,知又,∴是以为首项,3为公比的等比数列(2)解:由(1)知,∴,两式相减得∴17.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数在区间上的最大值和最小值.【正确答案】(Ⅰ);(Ⅱ)最大值1;最小值.【详解】试题分析:(Ⅰ)根据导数的几何意义,先求斜率,再代入切线方程公式中即可;(Ⅱ)设,求,根据确定函数的单调性,根据单调性求函数的最大值为,从而可以知道恒成立,所以函数是单调递减函数,再根据单调性求最值.试题解析:(Ⅰ)因为,所以.又因为,所以曲线在点处切线方程为.(Ⅱ)设,则.当时,,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过不能直接判断函数的单调性,所以需要再求一次导数,设,再求,一般这时就可求得函数的零点,或是()恒成立,这样就能知道函数的单调性,再根据单调性求其最值,从而判断的单调性,最后求得结果.18.已知函数(1)求函数的单调区间;(2)若方程=0有两个不相等的实数根,求实数的取值范围.【正确答案】(1)的单调递增区间是,单调递减区间是.(2)【分析】(1)首先求出函数的导函数,再解不等式即可得到函数的单调区间;(2)由得,将此方程的根看作函数与的图象交点的横坐标,结合(1)中相关性质得到函数的图象,数形结合即可得到参数的取值范围;【详解】解:(1)∵所以∴当时,,当时,;即的单调递增区间是,单调递减区间是.(2)由得,将此方程的根看作函数与的图象交点的横坐标,由(1)知函数在时有极大值,作出其大致图象,∴实数的取值范围是.本题考查利用导数研究函数的单调性及函数的零点问题,属于基础题.19.已知.(1)若函数在处取得极值,求实数的值;(2)若,求函数的单调递增区间;(3)若,存在正实数,使得成立,求的取值范围.【正确答案】(1);(2)答案见解析;(3).【分析】(1)由题意结合极值的概念可得,解得后,验证即可得解;(2)求导得,按照、、、分类讨论,求得的解集即可得解;(3)转化条件得,令,,求导确定的单调性和值域即可得解.【详解】(1),∵函数在处取得极值,,解得,当时,.∴当时,,单调递减;当时,,单调递增;∴当时,函数在处取得极小值;(2),,令,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025维修电工工作总结(15篇)
- 全国粤教版信息技术七年级下册第二单元第八课《多媒体作品及其界面设计》教学设计
- 储备干部心得体会范文(14篇)
- 库管个人工作计划范文(5篇)
- Unit 2 Sewction A 1a~1d 教学设计- 2024-2025学年人教版(2024)七年级英语上册
- 销售业务员2025工作总结(20篇)
- 生产部个人工作总结(18篇)
- 以感恩主题的小学生演讲稿(14篇)
- 2025年交通安全年度工作总结(6篇)
- 小学语文人教部编版二年级下册5 雷锋叔叔你在哪里教案设计
- 2025年河南建筑职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 企业交叉作业协议书
- 《航空工程技术英语》课件-Chapter 12 Flight Control教学课件:Flight Control + Auto Flight Control
- 湖南省衡东县新塘小学-山水一程三生有幸-六年级最后一次家长会【课件】
- 防雷知识培训课件
- 2024年美容师考试要关注的法规与行业标准指导试题及答案
- 2023年广东省广州市第27届WMO小学二年级上学期奥林匹克数学竞赛复赛试卷
- 2025中考(会考)地理综合题答题模板+简答题归纳
- 汽车热泵空调课件
- 学前教育基础知识课件 主题3 学前儿童全面发展教育
- 酱酒销售技巧培训
评论
0/150
提交评论