




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE1第4讲直线、平面平行的判定与性质[基础题组练]1.若直线l不平行于平面α,且l⊄α,则()A.α内的全部直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交解析:选B.因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.2.(2024·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是()A.l⊂α,m⊂β,α∥β B.α∥β,α∩γ=l,β∩γ=mC.l∥α,m⊂α D.l⊂α,α∩β=m解析:选B.选项A中,直线l,m也可能异面;选项B中,依据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交,故选B.3.(2024·长沙市统一模拟考试)设a,b,c表示不同直线,α,β表示不同平面,下列命题:①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.真命题的个数是()A.1 B.2C.3 D.4解析:选A.由题意,对于①,依据线线平行的传递性可知①是真命题;对于②,依据a∥b,b∥α,可以推出a∥α或a⊂α,故②是假命题;对于③,依据a∥α,b∥α,可以推出a与b平行、相交或异面,故③是假命题;对于④,依据a⊂α,b⊂β.α∥β,可以推出a∥b或a与b异面,故④是假命题,所以真命题的个数是1,故选A.4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B.由AE∶EB=AF∶FD=1∶4知EFeq\o(\s\do3(═),\s\up3(∥))eq\f(1,5)BD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HGeq\o(\s\do3(═),\s\up3(∥))eq\f(1,2)BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.5.在正方体ABCDA1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为.解析:如图,连接AC,BD交于O点,连接OE,因为OE∥BD1,而OE⊂平面ACE,BD1⊄平面ACE,所以BD1∥平面ACE.答案:平行6.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以F为DC的中点.故EF=eq\f(1,2)AC=eq\r(2).答案:eq\r(2)7.在三棱柱ABCA1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,AM=eq\f(2,3)AC.(1)若三棱锥A1C1ME的体积为eq\f(\r(2),6),求AA1的长;(2)证明:CB1∥平面A1EM.解:(1)设AA1=h,因为VA1C1ME=VEA1C1M,S△A1C1M=eq\f(1,2)A1C1×h=eq\f(h,2),三棱锥EA1C1M的高为2,所以VEA1C1M=eq\f(1,3)×eq\f(h,2)×2=eq\f(\r(2),6),解得h=eq\f(\r(2),2),即AA1=eq\f(\r(2),2).(2)证明:如图,连接AB1交A1E于点F,连接MF.因为E为BB1的中点,所以AF=eq\f(2,3)AB1,又AM=eq\f(2,3)AC,所以MF∥CB1,又MF⊂平面A1EM,CB1⊄平面A1EM,所以CB1∥平面A1EM.8.(2024·南昌市摸底调研)如图,在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求三棱锥PABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥PA,又MN⊄平面PAB,PA⊂平面PAB,所以MN∥平面PAB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面PAB,AB⊂平面PAB,所以CN∥平面PAB.又CN∩MN=N,所以平面CMN∥平面PAB.(2)由(1)知,平面CMN∥平面PAB,所以点M到平面PAB的距离等于点C到平面PAB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=eq\r(3),所以三棱锥PABM的体积V=VMPAB=VCPAB=VPABC=eq\f(1,3)×eq\f(1,2)×1×eq\r(3)×2=eq\f(\r(3),3).[综合题组练]1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为()A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°解析:选B.因为截面PQMN是正方形,所以PQ∥MN,QM∥PN,则PQ∥平面ACD,QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故C正确;由BD∥PN,所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;由上面可知:BD∥PN,MN∥AC.所以eq\f(PN,BD)=eq\f(AN,AD),eq\f(MN,AC)=eq\f(DN,AD),而AN≠DN,PN=MN,所以BD≠AC.B错误.故选B.2.在正四棱柱ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满意条件时,有平面D1BQ∥平面PAO.解析:如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.答案:Q为CC1的中点3.如图,四边形ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.4.(2024·南昌二模)如图,四棱锥PABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面PAB是等腰直角三角形,PA=PB,平面PAB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面PAD.(1)确定点E,F的位置,并说明理由;(2)求三棱锥FDCE的体积.解:(1)因为平面CEF∥平面PAD,平面CEF∩平面ABCD=CE,平面PAD∩平面ABCD=AD,所以CE∥AD,又AB∥DC,所以四边形AECD是平行四边形,所以DC=AE=eq\f(1,2)AB,即点E是AB的中点.因为平面CEF∥平面PAD,平面CEF∩平面PAB=EF,平面PAD∩平面PAB=PA,所以EF∥PA,又点E是AB的中点,所以点F是PB的中点.综上,E,F分别是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 积极心理学在班级工作中的应用计划
- 神经内科临床护理查房
- 2025年晋中驾驶员货运从业资格证模拟考试题
- 2025年金昌驾驶员货运从业资格证模拟考试
- 同程远景-利昌地产哈尔滨东都公元营销方案
- 如何点燃孩子内驱力?(修改)
- 汽车维修行业智能预约与维修管理系统方案
- 木材加工的工艺流程与质量控制作业指导书
- 环境监测数据管理与处理技术手册
- 电商平台广告投放策略手册
- 日本履历书模板
- 银行账户借用合同协议书范本
- 2022-2023年棉花行业洞察报告PPT
- 《工程质进度-质量管理》培训课件
- 精神科症状学演示课件
- 2.抗美援朝课件(共25张PPT)
- 运动特质自信量表
- 《CSS样式表的使用》教学设计
- 养老护理员考试多选题含答案
- 北师大版小学数学六年级总复习知识点汇总
- 专利权转让合同-电子科技大学计算机学院(20211109173408)
评论
0/150
提交评论