




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省昆明市官渡区官渡区第一中学高三5月联考试题数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A. B.C. D.2.已知数列为等比数列,若,且,则()A. B.或 C. D.3.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)4.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.95.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.6.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.7.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.8.是虚数单位,则()A.1 B.2 C. D.9.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.11.已知集合,则集合的非空子集个数是()A.2 B.3 C.7 D.812.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.14.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.15.实数,满足,如果目标函数的最小值为,则的最小值为_______.16.下图是一个算法流程图,则输出的S的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.18.(12分)如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.19.(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,以所在的直线分别为轴,轴,建立平面直角坐标系,如图所示,山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,,,千米,千米,求应开凿的隧道的长度.20.(12分)已知函数(I)当时,解不等式.(II)若不等式恒成立,求实数的取值范围21.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.22.(10分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M
),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1
(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,若函数在上没有零点,∴,∴,,解得,又,解得,当k=0时,解,当k=-1时,,可得,.故答案为:A.【点睛】本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.2、A【解析】
根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.3、C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.4、D【解析】
根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【详解】∵是定义是上的奇函数,满足,,可得,
函数的周期为3,
∵当时,,
令,则,解得或1,
又∵函数是定义域为的奇函数,
∴在区间上,有.
由,取,得,得,
∴.
又∵函数是周期为3的周期函数,
∴方程=0在区间上的解有共9个,
故选D.【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.5、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.6、A【解析】
作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.7、C【解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.8、C【解析】
由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.9、A【解析】
设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.10、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.11、C【解析】
先确定集合中元素,可得非空子集个数.【详解】由题意,共3个元素,其子集个数为,非空子集有7个.故选:C.【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.12、A【解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径.【详解】由题意可知:多面体的外接球即正四面体的外接球作面交于,连接,如图则,且为外接球的直径,可得,设三角形的外接圆的半径为,则,解得,设外接球的半径为,则可得,即,解得,设正三棱锥的高为,因为,所以,所以,而,所以正三棱锥的三条侧棱两两相互垂直,所以,设内切球的半径为,,即解得:.故答案为:.【点睛】本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.14、等腰三角形【解析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,15、【解析】
作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.16、【解析】
根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】试题分析:(1)连交于可得是中点,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点.(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系(如图),则各点坐标为.设存在满足要求,且,则由得:,面的一个法向量为,面的一个法向量为,由,得,解得,故存在,使二面角为直角,此时.18、(1)见证明;(2)【解析】
(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.【详解】(1)证明:设是的中点,连接、,是的中点,,,,,,,是平行四边形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,过点作,垂足为,平面,以为坐标原点,的方向为轴的正方向,建立如图的空间直角坐标系,则,,,,设是平面的一个法向量,则,,令,则,,,直线与平面所成角的正弦值为.【点睛】本题考查了线面垂直,线线垂直,利用空间直角坐标系解决线面夹角问题,意在考查学生的空间想象能力和计算能力.19、(1)当时,公路的长度最短为千米;(2)(千米).【解析】
(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.【详解】(1)由题可知,设点的坐标为,又,则直线的方程为,由此得直线与坐标轴交点为:,则,故,设,则.令,解得=10.当时,是减函数;当时,是增函数.所以当时,函数有极小值,也是最小值,所以,此时.故当时,公路的长度最短,最短长度为千米.(2)在中,,,所以,所以,根据正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【点睛】本题考查利用导数解决实际的最值问题,涉及构造函数法以及利用导数研究函数单调性和极值,还考查正余弦定理的实际应用,还考查解题分析能力和计算能力.20、(Ⅰ);(Ⅱ).【解析】试题分析:(1)根据零点分区间法,去掉绝对值解不等式;(2)根据绝对值不等式的性质得,因此将问题转化为恒成立,借此不等式即可.试题解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集为.(Ⅱ)由不等式的性质得:,要使不等式恒成立,则当时,不等式恒成立;当时,解不等式得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核工业工程设计行业跨境出海战略研究报告
- 住宅租赁经纪服务行业直播电商战略研究报告
- 型砂水泥行业直播电商战略研究报告
- 皮或革制橄榄球行业跨境出海战略研究报告
- 城市有轨电车设施企业制定与实施新质生产力战略研究报告
- 钢琴演出企业制定与实施新质生产力战略研究报告
- 实体书店企业制定与实施新质生产力战略研究报告
- 2025-2030鱿鱼产业规划专项研究报告
- 2025-2030除尘器项目可行性研究报告
- 2025-2030防栓塞袜行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 小故事大道理两只山羊
- 《机械基础》课程标准(中职)
- TD/T 1075-2023 光伏发电站工程项目用地控制指标(正式版)
- 简牍帛书格式研究
- DB11/1950-2021-公共建筑无障碍设计标准
- (正式版)SHT 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范
- 道路车辆 基于因特网协议的诊断通信(DoIP) 第2部分:传输协议与网络层服务
- 广东创新实验室建设计划书
- 安委会-安委会工作总结
- 2024年九年级中考数学专题训练-动点最值之胡不归模型
- 四年级下册数学运算定律简便计算练习100题及答案
评论
0/150
提交评论