河北省泊头市一中2025届高三数学试题第五次模拟考试试题_第1页
河北省泊头市一中2025届高三数学试题第五次模拟考试试题_第2页
河北省泊头市一中2025届高三数学试题第五次模拟考试试题_第3页
河北省泊头市一中2025届高三数学试题第五次模拟考试试题_第4页
河北省泊头市一中2025届高三数学试题第五次模拟考试试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省泊头市一中2025届高三数学试题第五次模拟考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数为奇函数,且,则()A.2 B.5 C.1 D.32.如果实数满足条件,那么的最大值为()A. B. C. D.3.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.4.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③5.设,则A. B. C. D.6.某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为()A. B. C. D.7.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A. B. C. D.8.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.10.下列函数中,值域为的偶函数是()A. B. C. D.11.执行下面的程序框图,则输出的值为()A. B. C. D.12.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是等比数列,若,,且∥,则______.14.已知向量,,若满足,且方向相同,则__________.15.如图,已知一块半径为2的残缺的半圆形材料,O为半圆的圆心,,残缺部分位于过点C的竖直线的右侧,现要在这块材料上裁出一个直角三角形,若该直角三角形一条边在上,则裁出三角形面积的最大值为______.16.展开式的第5项的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.18.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.19.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.20.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.21.(12分)已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.22.(10分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.2、B【解析】

解:当直线过点时,最大,故选B3、D【解析】

由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.4、D【解析】

对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.5、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6、B【解析】

利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,,解得.故选:B.【点睛】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.7、A【解析】

若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:,∴,设,∴,当时,,函数单调递增,当时,,函数单调递减,∴,当时,,当,,函数恒过点,分别画出与的图象,如图所示,,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,∴且,即,且∴,故实数m的最大值为,故选:A【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.8、D【解析】

利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.9、C【解析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,

该几何体的表面积:.故选C.【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.10、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.11、D【解析】

根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,

,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.12、C【解析】

首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】若,,且∥,则,由是等比数列,可知公比为..故答案为.14、【解析】

由向量平行坐标表示计算.注意验证两向量方向是否相同.【详解】∵,∴,解得或,时,满足题意,时,,方向相反,不合题意,舍去.∴.故答案为:1.【点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.15、【解析】

分两种情况讨论:(1)斜边在BC上,设,则,(2)若在若一条直角边在上,设,则,进一步利用导数的应用和三角函数关系式恒等变形和函数单调性即可求出最大值.【详解】(1)斜边在上,设,则,则,,从而.当时,此时,符合.(2)若一条直角边在上,设,则,则,,由知.,当时,,单调递增,当时,,单调递减,.当,即时,最大.故答案为:.【点睛】此题考查实际问题中导数,三角函数和函数单调性的综合应用,注意分类讨论把所有情况考虑完全,属于一般性题目.16、70【解析】

根据二项式定理的通项公式,可得结果.【详解】由题可知:第5项为故第5项的的系数为故答案为:70.【点睛】本题考查的是二项式定理,属基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,在上单调递增,时,在上递减,在上递增.(2).【解析】

(1)求出导函数,分类讨论,由确定增区间,由确定减区间;(2)由,利用(1)首先得或,求出的最小值即可得结论.【详解】(1)函数定义域是,,当时,,单调递增;时,令得,时,,递减,时,,递增,综上所述,时,在上单调递增,时,在上递减,在上递增.(2)易知,由函数单调性,若有唯一零点,则或.当时,,,从而只需时,恒成立,即,令,,在上递减,在上递增,∴,从而.时,,,令,由,知在递减,在上递增,,∴.综上所述,的取值范围是.【点睛】本题考查用导数研究函数的单调性,考查函数零点个数与不等式恒成立问题,解题关键在于转化,不等式恒成立问题通常转化为求函数的最值.这又可通过导数求解.18、(1)28种;(2)分布见解析,.【解析】

(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3.,,,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.19、(1)证明见解析(2)【解析】

(1)取中点,连结,证明平面得到答案.(2)如图所示,建立空间直角坐标系,为平面的一个法向量,平面的一个法向量为,计算夹角得到答案.【详解】(1)取中点,连结,,,,,为直角,,平面,平面,∴面面.(2)如图所示,建立空间直角坐标系,则,可取为平面的一个法向量.设平面的一个法向量为.则,其中,,不妨取,则..为锐二面角,∴二面角的余弦值为.【点睛】本题考查了面面垂直,二面角,意在考查学生的计算能力和空间想象能力.20、(1)(2)【解析】

(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】(1),且,,依次成等比数列,,即:,,,,,;(2),.【点睛】本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.21、(1);(2)【解析】

(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【详解】(1).取,解得.(2),因为,故,.根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论