




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省唐山市重点中学高三3月阶段测试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.2.函数的对称轴不可能为()A. B. C. D.3.在满足,的实数对中,使得成立的正整数的最大值为()A.5 B.6 C.7 D.94.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.5.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.16.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.37.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.88.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.9.已知向量,,设函数,则下列关于函数的性质的描述正确的是A.关于直线对称 B.关于点对称C.周期为 D.在上是增函数10.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.11.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.12.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.14.已知△的三个内角为,,,且,,成等差数列,则的最小值为__________,最大值为___________.15.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.16.在中,角的对边分别为,且.若为钝角,,则的面积为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.18.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.19.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.20.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.21.(12分)已知,,求证:(1);(2).22.(10分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.2.D【解析】
由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.3.A【解析】
由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.4.D【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.5.B【解析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.6.D【解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.7.B【解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.8.C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.9.D【解析】
当时,,∴f(x)不关于直线对称;当时,,∴f(x)关于点对称;f(x)得周期,当时,,∴f(x)在上是增函数.本题选择D选项.10.C【解析】
利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.11.A【解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.12.B【解析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
转化()为,即得解.【详解】由题意:().故答案为:【点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.14.【解析】
根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.15..【解析】
计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,,所以可得面,设外接圆的半径为,由正弦定理可得,即,,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.16.【解析】
转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.【详解】因为,所以.又因为,且为锐角,所以.由余弦定理得,即,解得,所以故答案为:【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析【解析】
(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值为0,1,2,3,,,,,的分布列为0123.【点睛】本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题18.(1)见解析(2)直线过定点.【解析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.19.(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.20.(1)(2)不存在;详见解析【解析】
(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.21.(1)见解析;(2)见解析.【解析】
(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年FRM金融风险管理师考试金融模型与风险管理模拟试卷
- 2025年消防执业资格考试题库:消防标准化建设消防安全设施操作与安全防护措施执行力度试题
- 2025年小学英语毕业考试模拟卷:语音语调训练与口语表达技巧试题
- 2025年中学教师资格考试《综合素质》教育教学能力提升教学实践试题(含答案)
- 2025年中学教师资格考试《综合素质》核心考点特训题库(含答案)之教育文化素养论述题库
- 猩红热病人的护理
- 2025年拍卖师职业资格考试专业题集:拍卖实务与行业规范试题卷
- 2025年古筝演奏技能考核试卷:古筝演奏中的音乐创新与突破试题
- 2025年小学英语毕业考试模拟卷:阅读理解技巧实战演练试题
- 2025年消防安全实操考试题库:实操应用篇-消防员实操技能训练题库
- 医疗机构抗菌药物临床应用分级管理目录(2024年版)
- 《 大学生军事理论教程》全套教学课件
- 中考数学计算题练习100道(2024年中考真题)
- 夏季防溺水安全知识主题班会课件【爱生命防溺水】
- 梦想(英语演讲稿)PPT幻灯片课件(PPT 12页)
- 中国联通员工绩效管理实施计划方案
- 法院刑事审判庭速裁庭廉政风险防控责任清单
- IEC60335-1(中文)
- (HydrolabBasic)广东水文水利计算软件使用手册
- 土方填筑碾压试验报告
- 排沙泵检修工艺流程及验收标准
评论
0/150
提交评论