版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Complimentsof
Accelerating
AIwith
SyntheticData
GeneratingDataforAIProjects
KhaledElEmam
THELEADERINAICOMPUTING.
Signuptogetthe
latestAInewsstraight
toyourinbox.
SUBSCRIBE
AcceleratingAIwith SyntheticDataGeneratingDataforAIProjects
KhaledElEmam
Beijing·Boston·Farnham·Sebastopol·Tokyo
AcceleratingAIwithSyntheticData
byKhaledElEmam
Copyright©2020O’ReillyMedia,Inc.Allrightsreserved.
PrintedintheUnitedStatesofAmerica.
PublishedbyO’ReillyMedia,Inc.,1005GravensteinHighwayNorth,Sebastopol,CA95472.
O’Reillybooksmaybepurchasedforeducational,business,orsalespromotionaluse.Onlineeditionsarealsoavailableformosttitles
(
).Formoreinfor‐mation,contactourcorporate/institutionalsalesdepartment:800-998-9938or
corporate@
.
AcquisitionsEditor:JonathanHassell
DevelopmentEditor:MelissaPotter
ProductionEditor:DanielElfanbaum
Copyeditor:SharonWilkey
Proofreader:ShannonTurlington
InteriorDesigner:DavidFutato
CoverDesigner:KarenMontgomery
Illustrator:RebeccaDemarest
June2020:FirstEdition
RevisionHistoryfortheFirstEdition
2020-06-03:FirstRelease
TheO’ReillylogoisaregisteredtrademarkofO’ReillyMedia,Inc.AcceleratingAIwithSyntheticData,thecoverimage,andrelatedtradedressaretrademarksofO’ReillyMedia,Inc.
Theviewsexpressedinthisworkarethoseoftheauthor,anddonotrepresentthepublisher’sviews.Whilethepublisherandtheauthorhaveusedgoodfaitheffortstoensurethattheinformationandinstructionscontainedinthisworkareaccurate,thepublisherandtheauthordisclaimallresponsibilityforerrorsoromissions,includ‐ingwithoutlimitationresponsibilityfordamagesresultingfromtheuseoforreli‐anceonthiswork.Useoftheinformationandinstructionscontainedinthisworkisatyourownrisk.Ifanycodesamplesorothertechnologythisworkcontainsordescribesissubjecttoopensourcelicensesortheintellectualpropertyrightsofoth‐ers,itisyourresponsibilitytoensurethatyourusethereofcomplieswithsuchlicen‐sesand/orrights.
ThisworkispartofacollaborationbetweenO’ReillyandNVIDIA.Seeour
state‐
mentofeditorialindependence
.
978-1-492-04596-0
[LSI]
v
TableofContents
1.
DefiningSyntheticData 1
WhatIsSyntheticData?
2
TheBenefitsofSyntheticData
5
LearningtoTrustSyntheticData
9
OtherApproachestoAccessingData
11
GeneratingSyntheticDatafromRealData
12
Conclusions
15
2.
TheSynthesisProcess 17
DataSynthesisProjects
17
TheDataSynthesisPipeline
21
SynthesisProgramManagement
27
BestPracticesforImplementingDataSynthesis
28
Conclusions
30
3.
SyntheticDataCaseStudies 33
ManufacturingandDistribution
34
HealthCare
36
FinancialServices
43
Transportation
46
Conclusions
50
4.
TheFutureofDataSynthesis 51
CreatingaDataUtilityFramework
51
RemovingInformationfromSyntheticData
52
vi|TableofContents
UsingDataWatermarking
53
GeneratingSynthesisfromSimulators
54
Conclusions
55
CHAPTER1
1
DefiningSyntheticData
Interestinsyntheticdatahasbeengrowingquiterapidlyoverthelastfewyears.Thishasbeendrivenbytwosimultaneoustrends.Thefirstisthedemandforlargeamountsofdatatotrainandbuildarti-ficialintelligenceandmachinelearning(AIML)models.Thesecondisrecentworkthathasdemonstratedeffectivemethodstogeneratehigh-qualitysyntheticdata.Bothhaveresultedintherecognitionthatsyntheticdatacansolvesomedifficultproblemsquiteeffec-tively,especiallywithintheAIMLcommunity.Groupsandbusi-nesseswithincompanieslikeNVIDIA,IBM,andAlphabet,aswellasagenciessuchastheUSCensusBureau,haveadopteddifferenttypesofdatasynthesistosupportmodelbuilding,applicationdevel-opment,anddatadissemination.
Thisreportprovidesageneraloverviewofsyntheticdatageneration,withafocusonthebusinessvalueandusecases,andhigh-levelcov-erageoftechniquesandimplementationpractices.Weaimtoanswerthequestionsthatabusinessreaderwouldtypicallyask(andhastypicallyasked),butatthesametimeprovidesomedirectiontoanalyticsleadershipseekingtounderstandtheoptionsavailableandwheretolooktogetstarted.
WeshowhowsyntheticdatacanaccelerateAIMLprojects.Someproblemsthatcanbetackledbyusingsyntheticdatawouldbetoocostlyordangerous(e.g.,inthecaseoftrainingmodelscontrollingautonomousvehicles)tosolveusingmoretraditionalmethods,orsimplycannotbedoneotherwise.
2|Chapter1:DefiningSyntheticData
AIMLprojectsrunindifferentindustries,andthemultipleindustryusecasesthatweincludeinthisreportareintendedtogiveyouaflavorofthebroadapplicationsofdatasynthesis.WedefineanAIMLprojectquitebroadlyaswell,toinclude,forexample,thedevelopmentofsoftwareapplicationsthathaveAIMLcomponents.Thereportisdividedintofourchapters.Thisintroductorychaptercoversbasicconceptsandpresentsthecaseforsyntheticdata.
Chap‐
ter2
presentsthedatasynthesisprocessandpipelines,scalingimplementationintheenterprise,andbestpractices.Aseriesofindustry-specificcasestudiesfollowin
Chapter3
.
Chapter4
isforward-lookingandconsiderswherethistechnologyisheaded.
Inthischapter,westartbydefiningthetypesofsyntheticdata.Thisisfollowedbyadescriptionofthebenefitsofusingsyntheticdata—thetypesofproblemsthatdatasynthesiscansolve.Giventherecentadoptionofthisapproachintopractice,buildingtrustinanalysisresultsfromsyntheticdataisimportant.Wethereforealsopresentexamplessupportingtheutilityofsyntheticdataanddiscussmeth‐odstobuildtrust.
Alternativestodatasynthesisexist,andwepresentthesenextwithanassessmentofstrengthsandweaknesses.Thischapterthencloseswithanoverviewofmethodsforsyntheticdatageneration.
WhatIsSyntheticData?
Ataconceptuallevel,syntheticdataisnotrealdatabutisdatathathasbeengeneratedfromrealdataandthathasthesamestatisticalpropertiesastherealdata.Thismeansthatananalystwhoworkswithasyntheticdatasetshouldgetanalysisresultsthataresimilartothosetheywouldgetwithrealdata.Thedegreetowhichasyn‐theticdatasetisanaccurateproxyforrealdataisameasureofutil-ity.Furthermore,werefertotheprocessofgeneratingsyntheticdataassynthesis.
Datainthiscontextcanmeandifferentthings.Forexample,datacanbestructureddata(i.e.,rowsandcolumns),asonewouldseeinarelationaldatabase.Datacanalsobeunstructuredtext,suchasdoc‐tors’notes,transcriptsofconversationsamongpeopleorwithdigitalassistants,oronlineinteractionsbyemailorchat.Furthermore,images,videos,audio,andvirtualenvironmentsarealsotypesofdatathatcanbesynthesized.Wehaveseenexamplesoffakeimages
WhatIsSyntheticData?|3
inthemachinelearningliterature;forinstance,realisticfacesofpeoplewhodonotexistintherealworldcanbecreated,andyoucan
viewtheresults
online.
Syntheticdataisdividedintotwotypes,basedonwhetheritisgen‐eratedfromactualdatasetsornot.
Thefirsttypeissynthesizedfromrealdatasets.Theanalystwillhavesomerealdatasetsandthenbuildamodeltocapturethedistribu‐tionsandstructureofthatrealdata.Here,structuremeansthemul‐tivariaterelationshipsandinteractionsinthedata.Thenthesyntheticdataissampledorgeneratedfromthatmodel.Ifthemodelisagoodrepresentationoftherealdata,thesyntheticdatawillhavesimilarstatisticalpropertiesastherealdata.
Forexample,adatasciencegroupspecializinginunderstandingcustomerbehaviorswouldneedlargeamountsofdatatobuilditsmodels.Butbecauseofprivacyorotherconcerns,theprocessforgettingaccesstothatcustomerdataisslowanddoesnotprovidegoodenoughdatawhenitdoesarrivebecauseofextensivemaskingandredactionofinformation.Instead,asyntheticversionoftheproductiondatasetscanbeprovidedtotheanalystsforbuildingtheirmodels.Thesynthesizeddatawillhavefewerconstraintsputonitsuseandwouldallowthemtoprogressmorerapidly.
Thesecondtypeofsyntheticdataisnotgeneratedfromrealdata.Itiscreatedbyusingexistingmodelsorbyusingbackgroundknowl‐edgeoftheanalyst.Theseexistingmodelscanbestatisticalmodelsofaprocess(forexample,developedthroughsurveysorotherdatacollectionmechanisms)ortheycanbesimulations.Simulationscanbecreated,forinstance,bygamingenginesthatcreatesimulated(andsynthetic)imagesofscenesorobjects,orbysimulationenginesthatgenerateshopperdatawithparticularcharacteristics(say,ageandgender)ofpeoplewhowalkpastthesiteofaprospectivestoreatdifferenttimesoftheday.
Backgroundknowledgecanbe,forexample,amodelofhowafinancialmarketbehavesbasedontextbookdescriptionsorbasedonthebehaviorsofstockpricesundervarioushistoricalconditions,oritcanbeknowledgeofthestatisticaldistributionofhumantrafficinastorebasedonyearsofexperience.Insuchacase,itisrelativelystraightforwardtocreateamodelandsamplefromittogeneratesyntheticdata.Iftheanalyst’sknowledgeoftheprocessisaccurate,thesyntheticdatawillbehaveinamannerthatisconsistentwith
4|Chapter1:DefiningSyntheticData
real-worlddata.Ofcourse,thisworksonlywhenthephenomenonofinterestistrulywellunderstood.
Asafinalexample,whenaprocessisnewornotwellunderstoodbytheanalystandthereisnorealhistoricaldatatouse,ananalystcanmakesomesimpleassumptionsaboutthedistributionsandcorrela-tionsamongthevariablesinvolvedintheprocess.Forexample,theanalystcanmakeasimplifyingassumptionthatthevariableshavenormaldistributionsand“medium”correlationsamongthem,andcreatedatathatway.Thistypeofdatawilllikelynothavethesamepropertiesasrealdatabutcanstillbeusefulforsomepurposes,suchasdebugginganRdataanalysisprogramorforsometypesofper-formancetestingofsoftwareapplications.
Forsomeusecases,havinghighutilitywillmatterquiteabit.Inothercases,mediumorevenlowutilitymaybeacceptable.Forexample,iftheobjectiveistobuildAIMLmodelstopredictcus-tomerbehaviorandmakemarketingdecisionsbasedonthat,highutilitywillbeimportant.Ontheotherhand,iftheobjectiveistoseeifyoursoftwarecanhandlealargevolumeoftransactions,thedatautilityexpectationswillbeconsiderablyless.Therefore,understand-ingwhatdata,models,simulators,andknowledgeexistaswellastherequirementsfordatautilitywilldrivethespecificapproachtouseforgeneratingthesyntheticdata.
Table1-1
providesasummaryofthesyntheticdatatypes.
Table1-1.Typesofdatasynthesiswiththeirutilityandprivacyimplications
Typeofsyntheticdata
Utility
Generatedfromreal(nonpublic)datasetsGeneratedfromrealpublicdata
Canbequitehigh
Canbehigh,althoughlimitationsexistbecause
publicdatatendstobede-identifiedoraggregated
Generatedfromanexistingmodelofa
process,whichcanalsoberepresentedinasimulationengine
Basedonanalystknowledge
Willdependonthefidelityoftheexistinggeneratingmodel
Willdependonhowwelltheanalystknowsthedomainandthecomplexityofthephenomenon
Generatedfromgenericassumptionsnotspecifictothephenomenon
Willlikelybelow
TheBenefitsofSyntheticData|5
Nowthatyouhaveanunderstandingofthetypesofsyntheticdata,wewilllookatthebenefitsofdatasynthesisoverallandforsomeofthesedatatypesspecifically.
TheBenefitsofSyntheticData
Inthissection,wepresentseveralwaysthatdatasynthesiscansolvepracticalproblemswithAIMLprojects.Thebenefitsofsyntheticdatacanbedramatic.Itcanmakeimpossibleprojectsdoable,signif‐icantlyaccelerateAIMLinitiatives,orresultinmaterialimprove‐mentintheoutcomesofAIMLprojects.
ImprovingDataAccess
DataaccessiscriticaltoAIMLprojects.Thedataisneededtotrainandvalidatemodels.Morebroadly,dataisalsoneededforevaluat‐ingAIMLtechnologiesthathavebeendevelopedbyothers,aswellasfortestingAIMLsoftwareapplicationsorapplicationsthatincor‐porateAIMLmodels.
Typically,dataiscollectedforaparticularpurposewiththeconsentoftheindividual;forexample,forparticipatinginawebinarorforparticipatinginaclinicalresearchstudy.Ifyouwanttousethatsamedataforadifferentpurpose,suchasforbuildingamodeltopredictwhatkindofpersonislikelytosignupforawebinarorwhowouldparticipateinastudy,thenthatisconsideredasecondarypurpose.
Accesstodataforsecondaryanalysisisbecomingproblematic.TheUSGovernmentAccountabilityOffice
1
andtheMcKinseyGlobalInstitute
2
bothnotethataccessingdataforbuildingandtestingAIMLmodelsisachallengefortheiradoptionmorebroadly.ADeloitteanalysisconcludedthatdataaccessissuesarerankedinthetopthreechallengesfacedbycompanieswhenimplementingAI.
3
ArecentsurveyfromMITTechnologyReviewreportedthatalmost
1GovernmentAccountabilityOffice,“ArtificialIntelligence:EmergingOpportunities,Challenges,andImplications,”GAO-18-142SP(March2018).
https://oreil.ly/Cpyli
.
2McKinseyGlobalInstitute,“ArtificialIntelligence:TheNextDigitalFrontier?”(June2017).
https://oreil.ly/zJ8oZ
.
3DeloitteInsights,“StateofAIintheEnterprise,2ndEdition”(2018).
https://oreil.ly/
l07tJ
.
6|Chapter1:DefiningSyntheticData
halfoftherespondentsidentifieddataavailabilityasaconstrainttotheuseofAIwiththeircompany.
4
Atthesametime,thepublicisgettinguneasyabouthowtheirdataisusedandshared,andprivacylawsarebecomingmorestrict.ArecentsurveybyO’Reillyhighligh‐tedtheprivacyconcernsofcompaniesadoptingmachinelearningmodels,withmorethanhalfofcompaniesexperiencedwithAIMLcheckingforprivacyissues.
5
InthesameMITsurveymentionedpreviously,64%ofrespondentsnotethat“changesinregulationorgreaterregulatoryclarityondatasharing”isadevelopmentthatwouldbemostlikelytoleadtomoredatasharing.
Contemporaryprivacyregulations,suchastheUSHealthInsurancePortabilityandAccountabilityAct(HIPAA)andtheGeneralDataProtectionRegulation(GDPR)inEurope,imposeconstraintsorrequirementstousingpersonaldataforasecondarypurpose.Anexampleisarequirementtogetanadditionalconsentorauthoriza‐tionfromindividuals.Inmanycases,thisisnotpracticalandcanintroducebiasintothedatabecauseconsentersandnonconsentersdifferinimportantcharacteristics.
6
Datasynthesiscangivetheanalyst,ratherefficientlyandatscale,realisticdatatoworkwith.Giventhatsyntheticdatawouldnotbeconsideredidentifiablepersonaldata,privacyregulationswouldnotapply,andobligationsofadditionalconsenttousethedataforsec‐ondarypurposeswouldnotberequired.
7
ImprovingDataQuality
Giventhedifficultyingettingaccesstodata,manyanalyststrytojustuseopensourceorpublicdatasets.Thesecanbeagoodstartingpoint,buttheylackdiversityandareoftennotwellmatchedtotheproblemsthatthemodelsareintendedtosolve.Furthermore,open
4MITTechnologyReviewInsights,“TheGlobalAIAgenda:Promise,Reality,andaFutureofDataSharing”(March2020).
https://oreil.ly/FHg87
5BenLoricaandPacoNathan,TheStateofMachineLearningAdoptionintheEnterprise(O’Reilly).
6KhaledElEmam,etal.,“AReviewofEvidenceonConsentBiasinResearch,”AmericanJournalofBioethics13,no.4(2013):42–44.
https://oreil.ly/SiG2N.
7However,oneshouldfollowgoodpractices,suchasprovidingnoticetoindividualsabouthowthedataisusedanddisclosed,andhavingethicsoversightontheusesofdataandAIMLmodels.
TheBenefitsofSyntheticData|7
datamaylacksufficientheterogeneityforrobusttrainingofmodels.Forexample,theymaynotcapturerarecaseswellenough.
Sometimestherealdatathatexistsisnotlabeled.Labelingalargenumberofexamplesforsupervisedlearningtaskscanbetime-consuming,andmanuallabelingiserrorprone.Again,syntheticlabeleddatacanbegeneratedtoacceleratemodeldevelopment.Thesynthesisprocesscanensurehighaccuracyinthelabeling.
UsingSyntheticDataforExploratoryAnalysis
Analystscanusesyntheticdatamodelstovalidatetheirassumptionsanddemonstratethekindofresultsthatcanbeobtainedwiththeirmodels.Inthisway,thesyntheticdatacanbeusedinanexploratorymanner.Knowingthattheyhaveinterestingandusefulresults,theanalystscanthengothroughthemorecomplexprocessofgettingtherealdata(eitherraworde-identified)tobuildthefinalversionsoftheirmodels.
Forexample,ananalystwhoisaresearchercouldusetheirexplora-torymodelsonsyntheticdatatothenapplyforfundingtogetaccesstotherealdata,whichmayrequireafullprotocolandmultiplelev-elsofapprovals.Insuchaninstance,workwithsyntheticdatathatdoesnotproducegoodmodelsoractionableresultswouldstillbebeneficialbecauseanalystswouldhaveavoidedtheextraeffortrequiredtogetaccesstotherealdataforapotentiallyfutileanalysis.Anothervaluableuseofsyntheticdataisfortraininganinitialmodelbeforetherealdataisaccessible.Thenwhentheanalystgetstherealdata,theycanusethetrainedmodelasastartingpointfortrainingwiththerealdata.Thiscansignificantlyexpeditethecon-vergenceoftherealdatamodel(hencereducingcomputetime),andcanpotentiallyresultinamoreaccuratemodel.Thisisanexampleofusingsyntheticdatafortransferlearning.
UsingSyntheticDataforFullAnalysis
Avalidationservercanbedeployedtoruntheanalysiscodethatworkedonthesyntheticdataontherealdata.Ananalystwouldper-formalloftheiranalysisonthesyntheticdata,andthensubmitthecodethatworkedonthesyntheticdatatoasecurevalidationserverthathasaccesstotherealdata,asillustratedin
Figure1-1
.Becausethesyntheticdatawouldbestructuredinthesamewayastheorigi-naldata,thecodethatworkedonthesyntheticdatashouldwork
8|Chapter1:DefiningSyntheticData
directlyontherealdata.Theresultsarethensentbacktotheanalysttoconfirmtheirmodels.
Thisisnotintendedtobeaninteractivesystem.Theoutputfromthevalidationserverneedstobecheckedtoensurethatnorevealinginformationisbeingsentoutbythecodeoutput.Therefore,itisintendedtobeusedonceortwicebytheanalystattheveryendoftheiranalysis.Itdoesprovideawaytoprovideassurancetotheana-lyststhatthesynthesisresultsarereplicableontherealdata.
Figure1-1.Thesetupforavalidationserverusedtoexecutefinalcodethatproducedresultsonthesyntheticdata(adaptedfromReplica
AnalyticsLtd.,withpermission)
Whentheutilityofthesyntheticdataishighenough,theanalystscangetsimilarresultswiththesyntheticdataastheywouldhavewiththerealdata,andnovalidationserverisrequired.Insuchacase,thesyntheticdataplaystheroleofaproxyfortherealdata.Thisscenarioisplayingoutinmoreandmoreusecases:assynthesismethodsimproveovertime,thisproxyoutcomeisgoingtobecomemorecommon.
ReplacingRealDataThatDoesNotExist
Insomesituations,realdatamaynotexist.Theanalystmaybetry-ingtomodelsomethingcompletelynew,orthecreationorcollec-tionofarealdatasetfromscratchmaybecostprohibitiveorimpractical.Synthesizeddatacancoveredgeorrarecasesthataredifficult,impractical,orunethicaltocollectintherealworld.
Syntheticdatacanalsobeusedtoincreasetheheterogeneityofatrainingdataset,whichcanresultinamorerobustAIMLmodel.Forexample,unusualcasesinwhichdatadoesnotexistorisdifficulttocollectcanbesynthesizedandincludedinthetrainingdataset.In
LearningtoTrustSyntheticData|9
thatcase,theutilityofthesyntheticdataismeasuredintherobust‐nessincrementitgivestotheAIMLmodels.
Wehaveseenthatsyntheticdatacanplayakeyroleinsolvingaser‐iesofpracticalproblems.Onecriticalfactorfortheadoptionofdatasynthesis,however,istrustinthegenerateddata.Ithaslongbeenrecognizedthathighdatautilitywillbeneededforthebroadadop‐tionofdatasynthesismethods.
8
Thisisthetopicweturntonext.
LearningtoTrustSyntheticData
Initialinterestinsyntheticdatastartedintheearly’90swithpropos‐alstousemultipleimputationmethodstogeneratesyntheticdata.Imputationingeneralistheprocessofreplacingmissingdatavalueswithestimates.Missingdatacanoccur,forexample,inasurveyifsomerespondentsdonotcompleteaquestionnaire.
Accurateimputeddatarequirestheanalysttobuildamodelofthephenomenonofinterestbyusingtheavailabledataandthenusethatmodeltoestimatewhattheimputedvalueshouldbe.Tobuildavalidimputationmodel,theanalystneedstoknowhowthedatawillbeeventuallyused.Withmultipleimputation,youcreatemultipleimputedvaluestocapturetheuncertaintyintheseestimatedvalues.Thisprocesscanworkreasonablywellifyouknowhowthedatawillbeused.
Inthecontextofusingimputationfordatasynthesis,therealdataisaugmentedwithsyntheticdatabyusingthesametypeofimputationtechniques.Insuchacase,therealdataisusedtobuildanimputa‐tionmodelthatisthenusedtosynthesizenewdata.
Thechallengeisthatifyourimputationmodelsaredifferentfromtheeventualusesofthedata,theimputedvaluesmaynotbeveryreflectiveoftherealvalues,andthiswillintroduceerrorsinthedata.Thisriskofbuildingthewrongsynthesismodelhasledtohistoriccautionintheapplicationofsyntheticdata.
Morerecently,statisticalmachinelearningmodelshavebeenusedfordatasynthesis.Theadvantageofthesemodelsisthattheycancapturethedistributionsandcomplexrelationshipsamongthe
8JeromeP.Reiter,“NewApproachestoDataDissemination:AGlimpseintotheFuture(?),”CHANCE17,no.3(June2004):11–15.
https://oreil.ly/x89Vd
.
10|Chapter1:DefiningSyntheticData
variablesquitewell.Ineffect,theydiscovertheunderlyingmodelinthedataratherthanhavingthatmodelprespecifiedbytheanalyst.Andnowwithdeeplearningdatasynthesis,thesemodelscanbequiteaccurateinthattheycancapturemuchofthesignalinthedata—evensubtlesignals.
Therefore,wearegettingclosertothepointwherethegenerativemodelsavailabletodayareproducingdatasetsthatarebecomingquitegoodproxiesforrealdata.Therearealsowaystoassesstheutilityofsyntheticdatamoreobjectively.
Forexample,wecancomparetheanalysisresultsfromsyntheticdatawiththeanalysisresultsfromtherealdata.Ifwedonotknowwhatanalysiswillbeperformedonthesyntheticdata,arangeofpossibleanalysiscanbetriedbasedonknownexamplesofusesofthatdata.Oran“allmodels”evaluationcanbeperformedinwhichallpossiblemodelsarebuiltfromtherealandsyntheticdatasetsandcompared.
9
TheUSCensusBureauhas,atthetimeofwriting,decidedtolever‐agesyntheticdataforsomeofitsmostheavilyusedpublicdatasets,the2020decennialcensusdata.Foritstabulardatadisseminations,theagencywillcreateasyntheticdatasetfromthecollectedindividual-levelcensusdataandthenproducethepublictabulationsfromthatsyntheticdataset.Amixtureofformalandnonformalmethodswillbeusedinthesynthesisprocess.
10
Weprovideanover‐viewofthesynthesisprocessin
Chapter2
.This,arguably,demon‐stratesthelarge-scaleadoptionofdatasynthesisforoneofthemostcriticalandheavilyuseddatasetsavailabletoday.
Asorganizationsbuildtrustinsyntheticdata,theywillmovefromexploratoryanalysisusecases,totheuseofavalidationserver,andthentousingsyntheticdataasaproxyforrealdata.
Alegitimatequestioniswhataretheotherapproachesthatareavail‐abletodaytoaccessdataforAIMLpurposes,inadditiontodata
9AreviewofutilityassessmentapproachescanbefoundinKhaledElEmam,“Seven
WaystoEvaluat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年交管12123驾照学法减分题库附完整答案(夺冠)
- 2026年福州职业技术学院单招(计算机)考试备考题库附答案
- 2026年口腔正畸学考试题库及参考答案【轻巧夺冠】
- 2026年一级注册建筑师之建筑材料与构造考试题库500道及答案(基础+提升)
- 2026年毛概期末考试试题库含答案【满分必刷】
- 2026年直播带货运营售后差评挽回调研
- 广东公务公务员考试试题及答案
- 2026年婚庆中式婚礼花轿租赁调研
- 灌南公务员考试试题及答案
- 古典名著《水浒传》练习题附参考答案【综合卷】
- 手术室护理中精细化管理的应用与手术安全及护理质量保障研究答辩
- 第四章 对数与对数函数(原卷版及全解全析)
- TCABEE《零碳办公建筑评价标准》
- 2025新加坡教育服务(私立教育)行业市场现状供需分析及投资评估规划分析研究报告
- 合作销售矿石协议书
- 年终档案管理总结
- 2025-2026学年苏教版(2024)小学科学二年级上册期末测试卷附答案(共三套)
- 城市生命线安全工程建设项目可行性研究报告
- 基于小波分析与神经网络融合的船舶同步发电机智能诊断体系研究
- 人力资源招聘流程管理工具人才库建立版
- 2025年人教版初中地理七年级上册全册知识点梳理
评论
0/150
提交评论