




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市乐亭县2023-2024学年中考数学适应性模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15π B.24π C.20π D.10π2.将抛物线y=-2xA.y=-2(x+1)2C.y=-2(x-1)23.在平面直角坐标系中,函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限4.若实数a,b满足|a|>|b|,则与实数a,b对应的点在数轴上的位置可以是()A. B. C. D.5.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或56.下列计算正确的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=27.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为()A.40 B.46 C.48 D.508.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.9.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是()A.4 B.1 C.2 D.310.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2二、填空题(本大题共6个小题,每小题3分,共18分)11.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.12.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______13.关于的分式方程的解为正数,则的取值范围是___________.14.=__________15.分解因式:ab2﹣9a=_____.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.三、解答题(共8题,共72分)17.(8分)解不等式组并写出它的所有整数解.18.(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.19.(8分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣20.(8分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则CG+9=______.(直接写出答案).21.(8分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.23.(12分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?24.如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。(1)求证:AE是⊙O的切线;(2)若AE=12,CD=10,求⊙O的半径。
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.2、C【解析】试题分析:∵抛物线y=-2x2+1向右平移1个单位长度,∴平移后解析式为:y=-2考点:二次函数图象与几何变换.3、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.4、D【解析】
根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.5、D【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.6、D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6÷x3=x3,C错误;==2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.7、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故选C.8、A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.9、D【解析】
根据垂径定理,圆周角的性质定理即可作出判断.【详解】∵P是弦AB的中点,CD是过点P的直径.∴AB⊥CD,弧AD=弧BD,故①正确,③正确;∠AOB=2∠AOD=4∠ACD,故②正确.P是OD上的任意一点,因而④不一定正确.故正确的是:①②③.故选:D.【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.10、D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1,﹣3)【解析】
画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.12、【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,,故正确;对称轴为,,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,,故正确.故答案为.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.13、且.【解析】
方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解为正数,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案为m>2且m≠1.14、2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:.15、a(b+3)(b﹣3).【解析】
根据提公因式,平方差公式,可得答案.【详解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.16、a≤且a≠1.【解析】
根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.三、解答题(共8题,共72分)17、不等式组的整数解有﹣1、0、1.【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式组的解集为:﹣2<x≤1,∴不等式组的整数解有﹣1、0、1.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.18、树高为5.5米【解析】
根据两角相等的两个三角形相似,可得△DEF∽△DCB,利用相似三角形的对边成比例,可得,代入数据计算即得BC的长,由AB=AC+BC,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为5.5米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.19、(1)﹣1;(2)x=﹣1是原方程的根.【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【详解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.20、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】
(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
(2)只要证明△AEF∽△ACB,可得解决问题;
(3)①分三种情形分别求解即可解决问题;
②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面积为π.如图2中,当AF=AO时,∵AB==,∴OA=,∵AF==,∴=,解得x=4(负根已经舍弃),∴AB=,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•,解得x2=2﹣2(负根已经舍弃),∴AB2=16+4x2=8+8,∴⊙O的面积=π••AB2=(2+2)π综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案为4.【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.21、.【解析】试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.试题解析:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∵AD=2,AB=6,∴.∴.∴AC=.考点:相似三角形的判定与性质.22、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.23、(1)24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级上册数学一课一练-第五单元 简易方程 重难点强化小专题(八) 解方程(含详细解析)人教版
- 艺术活动对学生综合素质的影响计划
- 财务信息公开机制计划
- 班级社会责任感的培养计划
- 生物教学科研活动安排计划
- 航海行业保安工作总结计划
- 消防救援保安工作总结计划
- 高效执行行业月度个人任务执行计划
- 如何高效启蒙儿童哲学
- 终端门店促销执行管理
- GB/T 25344-2010中华人民共和国铁路线路名称代码
- 部编版八年级语文下专题六古诗文默写与诗歌鉴赏课件
- 十二对脑神经的出入颅部位、分布、损伤表现汇总表
- 更换锅炉水冷壁管施工方案 勿删
- 2019年企业所得税汇算清缴审核及2020年税务咨询等服务招标文件【模板】
- 石化公司成品油销售中心考核方案
- 机动车检测站车辆起火及应急疏散演练记录
- DB13(J)∕T 105-2017 预应力混凝土管桩基础技术规程
- 加压气化操作规程(共115页)
- 标准鲁班尺尺寸对比表
- PackingList外贸装箱单模板
评论
0/150
提交评论