河南省襄城县春联考2023-2024学年中考数学最后冲刺浓缩卷含解析_第1页
河南省襄城县春联考2023-2024学年中考数学最后冲刺浓缩卷含解析_第2页
河南省襄城县春联考2023-2024学年中考数学最后冲刺浓缩卷含解析_第3页
河南省襄城县春联考2023-2024学年中考数学最后冲刺浓缩卷含解析_第4页
河南省襄城县春联考2023-2024学年中考数学最后冲刺浓缩卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省襄城县春联考2023-2024学年中考数学最后冲刺浓缩精华卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.下列运算结果正确的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a2.在下面的四个几何体中,左视图与主视图不相同的几何体是()A. B. C. D.3.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3,1) B.(3,2) C.(2,3) D.(1,3)4.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<05.下列性质中菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.既是轴对称图形又是中心对称图形6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°7.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分8.a的倒数是3,则a的值是()A. B.﹣ C.3 D.﹣39.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1410.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125° B.135° C.145° D.155°二、填空题(本大题共6个小题,每小题3分,共18分)11.如果实数x、y满足方程组,求代数式(+2)÷.12.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.13.如图,在中,,点D、E分别在边、上,且,如果,,那么________.14.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.15.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).16.计算:___.三、解答题(共8题,共72分)17.(8分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.18.(8分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.19.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.20.(8分)如图,在△ABC中,AB=AC=1,BC=5-1(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.21.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.22.(10分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)23.(12分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.24.有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】选项A,3a2-a2=2a2;选项B,a2·a3=a5;选项C,(-a2)3=-a6;选项D,a2÷a2=1.正确的只有选项C,故选C.2、B【解析】

由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3、D【解析】

解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.4、D【解析】

由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0

∵y=ax2+bx﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.5、C【解析】

根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质6、C【解析】

由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.7、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、A【解析】

根据倒数的定义进行解答即可.【详解】∵a的倒数是3,∴3a=1,解得:a=.故选A.【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.9、A【解析】

根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.10、A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12、.【解析】

作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【详解】解:如图作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积==,故答案:.【点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.13、【解析】

根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为:【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.14、1【解析】

根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=2×8,解得c=±1(线段是正数,负值舍去),故答案为1.【点睛】此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.15、1【解析】

由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.【详解】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案为1.【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.16、【解析】

直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【详解】原式.故答案为.【点睛】本题考查了实数运算,正确化简各数是解题的关键.三、解答题(共8题,共72分)17、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)【解析】分析:(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.故答案为6+4.点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.18、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.19、(1)见解析;(2)m=2【解析】

(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有两个不相等的实数根;(2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.20、(1)AD2=AC•CD.(2)36°.【解析】试题分析:(1)通过计算得到AD2=(2)由AD2=AC⋅CD,得到BC2设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC⋅CD,∴BC2设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.21、(1)(2).【解析】

(1)根据一次函数解析式求出M点的坐标,再把M点的坐标代入反比例函数解析式即可;(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C,根据一次函数解析式表示出B点坐标,利用△OMB的面积=×BO×MC算出面积,利用勾股定理算出MO的长,再次利用三角形的面积公式可得OM•h,根据前面算的三角形面积可算出h的值.【详解】解:(1)∵一次函数y1=﹣x﹣1过M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴反比列函数为.(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C.∵一次函数y1=﹣x﹣1与y轴交于点B,∴点B的坐标是(0,﹣1).∴.在Rt△OMC中,,∵,∴.∴点B到直线OM的距离为.22、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.【解析】

(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.由题意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0≤x≤10时,y=(3200﹣2500)x=700x,当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>1时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论