




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列第七章第4讲数列求和及数列的综合应用课标要求考情概览1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考向预测:从近三年高考情况来看,公式法求和是高考的热点内容,是数列求和的基础,小题及解答题经常涉及,难度不大;错位相减法一般出现在解答题的第(2)问,对运算能力要求较高,难度中等;裂项求和法主要在解答题中考查,主要考查裂项的基本方法.学科素养:主要考查逻辑推理、数学运算的素养栏目导航01基础整合
自测纠偏03素养微专
直击高考02重难突破
能力提升04配套训练基础整合自测纠偏12.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.(4)倒序相加法如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.【特别提醒】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如qn,qn+1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性.1.(教材改编)数列{1+2n-1}的前n项和为 (
)A.1+2n
B.2+2nC.n+2n-1
D.n+2+2n【答案】C【答案】C【答案】A4.(2021年湖南联考)(多选)已知数列{an}满足a1=1,a2=3,an+2-an=2,n∈N*,则 (
)A.a1+a2,a3+a4,a5+a6,…为等差数列B.a2-a1,a4-a3,a6-a5,…为常数列C.a2n-1=4n-3D.若数列{bn}满足bn=(-1)n·an,则数列{bn}的前100项和为100【答案】ABD5.(教材改编)已知数列{an}的前n项和为Sn且an=n·2n,则Sn=________.【答案】(n-1)2n+1+2解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.【答案】(1)√
(2)√
(3)√
(4)×
(5)√重难突破能力提升2
(2020年新高考卷)已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.分组转化法求和(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,bm=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.2.利用分组转化法求和的3个关键点会“列方程”即会利用方程思想求出等差数列与等比数列中的基本量会“用公式”会利用等差(比)数列的通项公式,求出所求数列的通项公式会“分组求和”观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n项和时可用分组求和法,把数列分成几个可以直接求和的数列【变式精练】1.(2021年昆明一模)设等差数列{an}的公差为d,等比数列{bn}的公比为q,已知a1=b1=1,b4=64,q=2d.(1)求数列{an},{bn}的通项公式;(2)记cn=a2n-1+b2n,求数列{cn}的前n项和Sn.解:(1)因为b4=64,所以b1q3=64,又b1=1,所以q=4.又q=2d,所以d=2.因为a1=1,所以an=a1+(n-1)d=2n-1,bn=b1qn-1=4n-1.示通法若数列的通项可转化为f(n+1)-f(n)的形式,常采用裂项求和的方法.使用裂项法,要注意正负相消时,消去了哪些项,保留了哪些项.由于数列{an}中每一项an均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多.裂项相消法求和【答案】C
(1)解:由S-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.由于{an}是正项数列,所以Sn>0,Sn+1>0,得Sn=n2+n.于是a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,当n=1时,也满足a1=2×1.综上,数列{an}的通项公式为an=2n.【解题技巧】裂项相消法求数列{an}的前n项和裂项相消法求和的实质是先将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)基本步骤(2)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.(3)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.错位相减法求和【解题技巧】错位相减法求数列{an}的前n项和(1)适用条件:若{an}是公差为d(d≠0)的等差数列,{bn}是公比为q(q≠1)的等比数列,求数列{an·bn}的前n项和Sn;(2)基本步骤(3)注意事项:①在写出Sn与qSn的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出Sn-qSn;②作差后,应注意减式中所剩各项的符号要变号.【变式精练】3.(2020年Ⅰ卷)设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.解:(1)设{an}的公比为q,由题意得2a1=a2+a3,即2a1=a1q+a1q2.所以q2+q-2=0,解得q=1(舍去)或q=-2.故{an}的公比为-2.素养微专直击高考3有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.如何解决此类问题呢?下面从两方面讲起.运算求解能力——奇偶项求和的痛点思维卡壳点看到繁杂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术危急重症个案护理
- 2025年湖南省安全员-C证复审考试题及答案
- 教育学教师的教学
- 信息技术 第二册(五年制高职)课件 9.1.5 人工智能与传统行业的融合
- 思维导图集训6小时找到适合你的高效学习法第5讲 职业生涯规划让你看清十年后的自己
- 学校领导的思维方式与工作方法-培训课件
- 建筑相关知识
- 2025房地产经纪人《房地产经纪职业导论》考前必练题库500题(含真题、重点题)
- 密码法培训知识讲座
- 教师地震安全培训
- 轮机工程船舶柴油机主动力推进装置培训课件
- 森林区划-组织森林经营类型(森林资源经营管理)
- 灰枣种植技术
- 医院污水处理技术指南(环发2023年197号2023年20实施)
- 求职登记表(标准模版)
- 高中历史 统编版 必修 《中外历史纲要》(下) 多元与交融:文明网络的初构《古代文明的产生与发展》第2课时 古代世界的帝国与文明的交流 课件
- 智慧景区建设实务 智慧景区视频监控系统
- 简单实用电子简历表格,个人简历模板word格式
- 备考2023新高考英语听力12(答案听力原文)
- GB/T 23724.1-2016起重机检查第1部分:总则
- GB 2707-2016食品安全国家标准鲜(冻)畜、禽产品
评论
0/150
提交评论